ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated local dipoles in PbTe

93   0   0.0 ( 0 )
 نشر من قبل Boris Sangiorgio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined single-crystal x-ray diffuse scattering and ab-initio molecular dynamics study of lead telluride, PbTe. Well-known for its thermoelectric and narrow-gap semiconducting properties, PbTe recently achieved further notoriety following the report of an unusual off-centering of the lead atoms, accompanied by a local symmetry breaking, on heating. This observation, which was named emphanisis, ignited considerable controversy regarding the details of the underlying local structure and the appropriate interpretation of the total scattering experiments. In this study, we demonstrate close agreement between our diffuse scattering measurements and our calculations, which allows us to analyze features such as higher-order correlations that are accessible in the simulations but not experimentally. This allowed us to discover an unusual correlated local dipole formation extending over several unit cells with an associated local reduction of the cubic symmetry in both our x-ray diffuse scattering measurements and our molecular dynamics simulations. Importantly, when averaged spatially or temporally, the most probable positions for the ions are at the centers of their coordination polyhedra. Our results therefore clarify the nature of the local symmetry breaking, and reveal the source of the earlier controversy regarding the existence or absence of off-centering. Finally, we provide an interpretation of the behavior in terms of coupled soft optical and acoustic modes, which is linked also to the high thermoelectric performance of PbTe.

قيم البحث

اقرأ أيضاً

148 - O. Delaire , J. Ma , K. Marty 2011
Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivi ty. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type.
96 - M. P. Jiang , M. Trigo , S. Fahy 2021
We report the observation of photo-induced plasmon-phonon coupled modes in the group IV-VI semiconductor PbTe using Fourier-transform inelastic X-ray scattering at the Linac Coherent Light Source (LCLS). We measure the near-zone-center dispersion of the heavily screened longitudinal optical (LO) phonon branch as extracted from differential changes in x-ray diffuse scattering intensity following above band gap photoexcitation.
We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride, and perform a complete characterization of how the anharmonic effects dominate the phonons in PbTe as temperature increases. This effect is the stronge st factor in the favorable thermoelectric properties of PbTe: an optical-acoustic phonon band crossing reduces the speed of sound and the intrinsic thermal conductivity. We present the detailed temperature dependence of the dispersion relation and compare our calculated neutron scattering cross section with recent experimental measurements. We analyze the thermal resistivitys variation with temperature and clarify misconceptions about existing experimental literature. This quantitative prediction opens the way to phonon phase space engineering, to tailor the lifetimes of crucial heat carrying phonons.
74 - M.P. Jiang , M. Trigo , S. Fahy 2015
The interactions between electrons and phonons drive a large array of technologically relevant material properties including ferroelectricity, thermoelectricity, and phase-change behaviour. In the case of many group IV-VI, V, and related materials, t hese interactions are strong and the materials exist near electronic and structural phase transitions. Their close proximity to phase instability produces a fragile balance among the various properties. The prototypical example is PbTe whose incipient ferroelectric behaviour has been associated with large phonon anharmonicity and thermoelectricity. Experimental measurements on PbTe reveal anomalous lattice dynamics, especially in the soft transverse optical phonon branch. This has been interpreted in terms of both giant anharmonicity and local symmetry breaking due to off-centering of the Pb ions. The observed anomalies have prompted renewed theoretical and computational interest, which has in turn revived focus on the extent that electron-phonon interactions drive lattice instabilities in PbTe and related materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS) to show that photo-injection of free carriers stabilizes the paraelectric state. With support from constrained density functional theory (CDFT) calculations, we find that photoexcitation weakens the long-range forces along the cubic direction tied to resonant bonding and incipient ferroelectricity. This demonstrates the importance of electronic states near the band edges in determining the equilibrium structure.
We report first principles calculations of the phonon dispersions of PbTe both for its observed structure and under compression. At the experimental lattice parameter we find a near instability of the optic branch at the zone center, in accord with e xperimental observations.This hardens quickly towards the zone boundary. There is also a very strong volume dependence of this mode, which is rapidly driven away from an instability by compression. These results are discussed inrelation to the thermal conductivity of the material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا