ﻻ يوجد ملخص باللغة العربية
We study the nuclear magnetic relaxation rate and Knight shift in the presence of the orbital and quadrupole interactions for three-dimensional Dirac electron systems (e.g., bismuth-antimony alloys). By using recent results of the dynamic magnetic susceptibility and permittivity, we obtain rigorous results of the relaxation rates $(1/T_1)_{rm orb}$ and $(1/T_1)_{rm Q}$, which are due to the orbital and quadrupole interactions, respectively, and show that $(1/T_1)_{rm Q}$ gives a negligible contribution compared with $(1/T_1)_{rm orb}$. It is found that $(1/T_1)_{rm orb}$ exhibits anomalous dependences on temperature $T$ and chemical potential $mu$. When $mu$ is inside the band gap, $(1/T_1)_{rm orb} sim T ^3 log (2 T/omega_0)$ for temperatures above the band gap, where $omega_0$ is the nuclear Larmor frequency. When $mu$ lies in the conduction or valence bands, $(1/T_1)_{rm orb} propto T k_{rm F}^2 log (2 |v_{rm F}| k_{rm F}/omega_0)$ for low temperatures, where $k_{rm F}$ and $v_{rm F}$ are the Fermi momentum and Fermi velocity, respectively. The Knight shift $K_{rm orb}$ due to the orbital interaction also shows anomalous dependences on $T$ and $mu$. It is shown that $K_{rm orb}$ is negative and its magnitude significantly increases with decreasing temperature when $mu$ is located in the band gap. Because the anomalous dependences in $K_{rm orb}$ is caused by the interband particle-hole excitations across the small band gap while $left( 1/T_1 right)_{rm orb}$ is governed by the intraband excitations, the Korringa relation does not hold in the Dirac electron systems.
We investigate the dynamically polarized nuclear-spin system in Fe/emph{n}-GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to a
We present a detailed experimental and theoretical analysis of the spin dynamics of two-dimensional electron gases (2DEGs) in a series of n-doped GaAs/AlGaAs quantum wells. Picosecond-resolution polarized pump-probe reflection techniques were applied
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2 of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This eff
Thermal effects contributing to the Casimir interaction between objects are usually small at room temperature and they are difficult to separate from quantum mechanical contributions at higher temperatures. We propose that the thermal Casimir force e
In some theoretical analyses of microwave-induced magnetoresistance oscillations in high-mobility two-dimensional systems, the inelastic relaxation time $tau_{in}$ due to electron-electron scattering is evaluated using an equilibrium distribution fun