ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohomogeneity-one $G_2$-Laplacian flow on 7-torus

408   0   0.0 ( 0 )
 نشر من قبل Chengjian Yao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the hypersymplectic flow of simple type on standard torus $mathbb{T}^4$ exists for all time and converges to the standard flat structure modulo diffeomorphisms. This result in particular gives the first example of a cohomogeneity-one $G_2$-Laplacian flow on a compact $7$-manifold which exists for all time and converges to a torsion-free $G_2$ structure modulo diffeomorphisms.



قيم البحث

اقرأ أيضاً

We study the existence of left invariant closed $G_2$-structures defining a Ricci soliton metric on simply connected nonabelian nilpotent Lie groups. For each one of these $G_2$-structures, we show long time existence and uniqueness of solution for the Laplacian flow on the noncompact manifold. Moreover, considering the Laplacian flow on the associated Lie algebra as a bracket flow on $R^7$ in a similar way as in [23] we prove that the underlying metrics $g(t)$ of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in the nilpotent Lie group, as $t$ goes to infinity.
We exhibit the first examples of closed 4-manifolds with nonnegative sectional curvature that lose this property when evolved via Ricci flow.
We describe the $10$-dimensional space of $Sp(2)$-invariant $G_2$-structures on the homogeneous $7$-sphere $S^7=Sp(2)/Sp(1)$ as $mathbb{R}^+times Gl^+(3,mathbb{R})$. In those terms, we formulate a general Ansatz for $G_2$-structures, which realises r epresentatives in each of the $7$ possible isometric classes of homogeneous $G_2$-structures. Moreover, the well-known nearly parallel round and squashed metrics occur naturally as opposite poles in an $S^3$-family, the equator of which is a new $S^2$-family of coclosed $G_2$-structures satisfying the harmonicity condition $div T=0$. We show general existence of harmonic representatives of $G_2$-structures in each isometric class through explicit solutions of the associated flow and describe the qualitative behaviour of the flow. We study the stability of the Dirichlet gradient flow near these critical points, showing explicit examples of degenerate and nondegenerate local maxima and minima, at various regimes of the general Ansatz. Finally, for metrics outside of the Ansatz, we identify families of harmonic $G_2$-structures, prove long-time existence of the flow and study the stability properties of some well-chosen examples.
We study the Laplacian coflow and the modified Laplacian coflow of $G_2$-structures on the $7$-dimensional Heisenberg group. For the Laplacian coflow we show that the solution is always ancient, that is it is defined in some interval $(-infty,T)$, wi th $0<T<+infty$. However, for the modified Laplacian coflow, we prove that in some cases the solution is defined only on a finite interval while in other cases the solution is ancient or eternal, that is it is defined on $(-infty, infty)$.
201 - Masato Arai , Kurando Baba 2017
We construct examples of cohomogeneity one special Lagrangian submanifolds in the cotangent bundle over the complex projective space, whose Calabi-Yau structure was given by Stenzel. For each example, we describe the condition of special Lagrangian a s an ordinary differential equation. Our method is based on a moment map technique and the classification of cohomogeneity one actions on the complex projective space classified by Takagi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا