ﻻ يوجد ملخص باللغة العربية
We study the existence of left invariant closed $G_2$-structures defining a Ricci soliton metric on simply connected nonabelian nilpotent Lie groups. For each one of these $G_2$-structures, we show long time existence and uniqueness of solution for the Laplacian flow on the noncompact manifold. Moreover, considering the Laplacian flow on the associated Lie algebra as a bracket flow on $R^7$ in a similar way as in [23] we prove that the underlying metrics $g(t)$ of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in the nilpotent Lie group, as $t$ goes to infinity.
We show obstructions to the existence of a coclosed $G_2$-structure on a Lie algebra $mathfrak g$ of dimension seven with non-trivial center. In particular, we prove that if there exist a Lie algebra epimorphism from $mathfrak g$ to a six-dimensional
We prove the hypersymplectic flow of simple type on standard torus $mathbb{T}^4$ exists for all time and converges to the standard flat structure modulo diffeomorphisms. This result in particular gives the first example of a cohomogeneity-one $G_2$-L
An alternative proof of the existence of torsion-free $G_2$-structures on resolutions of $G_2$-orbifolds considered in arXiv:1707.09325 is given. The proof uses weighted Holder norms which are adapted to the geometry of the manifold. This leads to be
We consider seven-dimensional unimodular Lie algebras $mathfrak{g}$ admitting exact $G_2$-structures, focusing our attention on those with vanishing third Betti number $b_3(mathfrak{g})$. We discuss some examples, both in the case when $b_2(mathfrak{
We review results about $G_2$-structures in relation to the existence of special metrics, such as Einstein metrics and Ricci solitons, and the evolution under the Laplacian flow on non-compact homogeneous spaces. We also discuss some examples in detail.