ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective relativistic mean field model for finite nuclei and neutron stars

134   0   0.0 ( 0 )
 نشر من قبل Bharat Kumar
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New Relativistic mean field parameter set IOPB-I has been developed.

قيم البحث

اقرأ أيضاً

Based on relativistic mean field (RMF) models, we study finite $Lambda$-hypernuclei and massive neutron stars. The effective $N$-$N$ interactions PK1 and TM1 are adopted, while the $N$-$Lambda$ interactions are constrained by reproducing the binding energy of $Lambda$-hyperon at $1s$ orbit of $^{40}_{Lambda}$Ca. It is found that the $Lambda$-meson couplings follow a simple relation, indicating a fixed $Lambda$ potential well for symmetric nuclear matter at saturation densities, i.e., around $V_{Lambda} = -29.786$ MeV. With those interactions, a large mass range of $Lambda$-hypernuclei can be well described. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the $Lambda$-meson couplings $g_{sigmaLambda}/g_{sigma N}gtrsim 0.73$, $g_{omegaLambda}/g_{omega N}gtrsim 0.80$ for PK1 and $g_{sigmaLambda}/g_{sigma N}gtrsim 0.81$, $g_{omegaLambda}/g_{omega N}gtrsim 0.90$ for TM1, respectively. This resolves the Hyperon Puzzle without introducing any additional degrees of freedom.
136 - A. Lavagno 2013
We investigate an effective relativistic equation of state at finite values of temperature and baryon chemical potential with the inclusion of the full octet of baryons, the Delta-isobars and the lightest pseudoscalar and vector meson degrees of free dom. These last particles have been introduced within a phenomenological approach by taking into account of an effective chemical potential and mass depending on the self-consistent interaction between baryons. In this framework, we study of the hadron yield ratios measured in central heavy ion collisions over a broad energy range and present the beam energy dependence of underlying dynamic quantities like the net baryon density and the energy density.
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu clei with $Age 12$ and the corresponding core nuclei. Based on effective $NN$ interactions DD-ME2 and PKDD, the ratios $R_sigma$ and $R_omega$ of scalar and vector coupling constants between $Lambda N$ and $NN$ interactions are determined by fitting calculated $Lambda$ separation energies to experimental values. We propose six new effective interactions for $Lambda$ hypernuclei: DD-ME2-Y1, DD-ME2-Y2, DD-ME2-Y3, PKDD-Y1, PKDD-Y2 and PKDD-Y3 with three ways of grouping and including these eleven hypernuclei in the fitting. It is found that the two ratios $R_sigma$ and $R_omega$ are correlated well and there holds a good linear relation between them. The statistical errors of the ratio parameters in these effective interactions are analyzed. These new effective interactions are used to study the equation of state of hypernuclear matter and neutron star properties with hyperons.
A new parameter set is generated for finite and infinite nuclear system within the effective field theory motivated relativistic mean field (ERMF) formalism. The isovector part of the ERMF model employed in the present study includes the coupling of nucleons to the {delta} and r{ho} mesons and the cross-coupling of r{ho} mesons to the {sigma} and {omega} mesons. The results for the finite and infinite nuclear systems obtained using our parameter set are in harmony with the available experimental data. We find the maximum mass of the neutron star to be 2.03Modot? and yet a relatively smaller radius at the canonical mass, 12.69 km, as required by the available data.
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even$-$even isotopes of Fe, Ni, Zn, Ge, Se and Kr within the framework of the axially deformed self-consistent relativist ic mean field for the non-linear NL3$^*$ and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 $leq$ A $leq$ 96. From this analysis, we found a notable signature of a shell closure at $N$ = 50 in the isotopic chains of Fe, Ni, Zn, Ge, Se and Kr nuclei. The present study reveals an interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا