ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of two-photon pulses from a quantum two-level system

82   0   0.0 ( 0 )
 نشر من قبل Kevin Fischer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theoretical community has found interest in the ability of a two-level atom to generate a strong many-body interaction with light under pulsed excitation. Single-photon generation is the most well-known effect, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent proposals have surprisingly suggested that scattering with intense laser fields off a two-level atom may generate oscillations in two-photon emission that are out of phase with its Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide crucial insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the production of novel multi-photon states.



قيم البحث

اقرأ أيضاً

Two-color second-order correlations of the light scattered near-resonantly by a quantum dot were measured by means of spectrally-filtered coincidence detection. The effects of filter frequency and bandwidth were studied under monochromatic laser exci tation, and a complete two-photon spectrum was reconstructed. In contrast to the ordinary one-photon spectrum, the two-photon spectrum is asymmetric with laser detuning and exhibits a rich structure associated with both real and virtual two-photon transitions down the dressed states ladder. Photon pairs generated via virtual transitions are found to violate the Cauchy-Schwartz inequality by a factor of 60. Our experiments are well described by the theoretical expressions obtained by del Valle et al. via time-and normally-ordered correlation functions.
We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac drive. If the drive is polarized in the plane perpendicular to the dc field, the drive photons are resonantly absorbed when the spacing between the Zeeman levels is close to the photon energy. This is the only resonance when the drive is circularly polarized. For linearly polarized drive, additional resonances corresponding to absorption of three, five, and multiple odd numbers of photons is possible. Interaction with the environment causes the broadening of the absorption lines. We demonstrate that the interaction with environment enables the forbidden two-photon absorption. We adopt a model of the environment in the form of random telegraph noise produced by a single fluctuator. As a result of the synchronous time fluctuations of different components of the random field, the shape of the two-photon absorption line is non-Lorentzian and depends dramatically on the drive amplitude. This shape is a monotonic curve at strong drive, while, at weak drive, it develops a two-peak structure reminiscent of an induced transparency on resonance.
We report the experimental verification of nonclassical correlations for a four-wave-mixing process in an ensemble of cold two-level atoms, confirming theoretical predictions by Du et al. in 2007 for the violation of a Cauchy-Schwarz inequality in th e system, and obtaining $R = (1.98pm0.03) leq 1$. Quantum correlations are observed in a nano-seconds timescale, in the interference between the central exciting frequency and sidebands dislocated by the detuning to the atomic resonance. They prevail without filters over the noise background coming from linear scattering from the same optical transition. These correlations are fragile with respect to processes that disturb the phase of the atomic excitation, but are robust to variations in number of atoms and to increasing light intensities.
We predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishabl e photons, where one photon creates a standing wave that traps the other photon. The localization is caused by the interplay between on-site repulsion due to the photon blockade and the waveguide-mediated long-range coupling between the qubits.
We investigate the generation of single photons and photon pairs in a cavity quantum electrodynamics system of a four-level quantum dot coupled to bimodal cavity. By tuning frequencies and intensity ratio of the driving lasers, sub-Poissonian and sup er-Poissonian photon statistics are obtained in each nondegenerate cavity mode respectively. Single photon emission is characterized as zero-delay second-order correlation function g^2(0)~0.15. Photon pair emission under the two-photon resonance excitation is quantified by Mandel parameter as Q~0.04. The mean cavity photon number in both scenarios can maintain large around 0.1. As a result, single photon emission and two-photon emission can be integrated in our proposed system only by tuning the external parameters of the driving lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا