ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of nonclassical correlations in biphotons generated from an ensemble of pure two-level atoms

74   0   0.0 ( 0 )
 نشر من قبل Michelle O. Ara\\'ujo PhD
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the experimental verification of nonclassical correlations for a four-wave-mixing process in an ensemble of cold two-level atoms, confirming theoretical predictions by Du et al. in 2007 for the violation of a Cauchy-Schwarz inequality in the system, and obtaining $R = (1.98pm0.03) leq 1$. Quantum correlations are observed in a nano-seconds timescale, in the interference between the central exciting frequency and sidebands dislocated by the detuning to the atomic resonance. They prevail without filters over the noise background coming from linear scattering from the same optical transition. These correlations are fragile with respect to processes that disturb the phase of the atomic excitation, but are robust to variations in number of atoms and to increasing light intensities.



قيم البحث

اقرأ أيضاً

Squeezing of collective atomic spins has been shown to improve the sensitivity of atomic clocks and magnetometers to levels significantly below the standard quantum limit. In most cases the requisite atom-atom entanglement has been generated by dispe rsive interaction with a quantized probe field, or by state dependent collisions in a quantum gas. Such experiments typically use complex multilevel atoms like Rb or Cs, with the relevant interactions designed so atoms behave like pseudo-spin-$1/2$ particles. We demonstrate the viability of spin squeezing for collective spins composed of the physical angular momenta of $sim 10^6$ Cs atoms, each in an internal spin-4 hyperfine state. A peak metrological squeezing of $gtrsim -5$dB was generated by quantum backaction from a dispersive quantum nondemolition (QND) measurement, implemented using a two-color optical probe that minimizes tensor light shifts without sacrificing measurement strength. Other significant developments include the successful application of composite pulse techniques for accurate dynamical control of the collective spin, enabled by broadband suppression of background magnetic fields inside a state-of-the-art magnetic shield. The absence of classical noise has allowed us to compare the observed quantum projection noise and squeezing to a theoretical model that properly accounts for both the relevant atomic physics and the spatial mode of the collective spin, finding good quantitative agreement and thereby validating its use in other contexts. Thus, our work sets the stage for experiments on quantum feedback, deterministic squeezing, closed-loop magnetometry, and new types of quantum simulation based on continuous QND measurement and feedback.
Emission and absorption of light lie at the heart of light-matter interaction. Although the emission and absorption rates are regarded as intrinsic properties of atoms and molecules, various ways to modify these rates have been sought in critical app lications such as quantum information processing, metrology and light-energy harvesting. One of the promising approaches is to utilize collective behavior of emitters as in superradiance. Although superradiance has been observed in diverse systems, its conceptual counterpart in absorption has never been realized. Here, we demonstrate superabsorption, enhanced cooperative absorption, by correlated atoms of phase-matched superposition state. By implementing an opposite-phase-interference idea on a superradiant state or equivalently a time-reversal process of superradiance, we realized the superabsorption with its absorption rate much faster than that of the ordinary ground-state absorption. The number of photons completely absorbed for a given time interval was measured to be proportional to the square of the number of atoms. Our approach, breaking the limitation of the conventional absorption, can help weak-signal sensing and advance efficient light-energy harvesting as well as light-matter quantum interfaces.
The theoretical community has found interest in the ability of a two-level atom to generate a strong many-body interaction with light under pulsed excitation. Single-photon generation is the most well-known effect, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent proposals have surprisingly suggested that scattering with intense laser fields off a two-level atom may generate oscillations in two-photon emission that are out of phase with its Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide crucial insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the production of novel multi-photon states.
We generate entangled states of an ensemble of 5*10^4 rubidium-87 atoms by optical quantum nondemolition measurement. The resonator-enhanced measurement leaves the atomic ensemble, prepared in a superposition of hyperfine clock levels, in a squeezed spin state. By comparing the resulting reduction of quantum projection noise (up to 8.8(8) dB) with the concomitant reduction of coherence, we demonstrate a clock input state with spectroscopic sensitivity 3.0(8) dB beyond the standard quantum limit.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا