ﻻ يوجد ملخص باللغة العربية
Multimode optical fibers have seen increasing applications in communication, imaging, high-power lasers and amplifiers. However, inherent imperfections and environmental perturbations cause random polarization and mode mixing, making the output polarization states very different from the input one. This poses a serious issue for employing polarization sensitive techniques to control light-matter interactions or nonlinear optical processes at the distal end of a fiber probe. Here we demonstrate a complete control of polarization states for all output channels by only manipulating the spatial wavefront of a laser beam into the fiber. Arbitrary polarization states for individual output channels are generated by wavefront shaping without constraint on input polarizations. The strong coupling between spatial and polarization degrees of freedom in a multimode fiber enables full polarization control with spatial degrees of freedom alone, transforming a multimode fiber to a highly-efficient reconfigurable matrix of waveplates.
A scanning white light interferometer is developed to measure the distributed polarization coupling (DPC) in high birefringence polarization maintaining fibers (PMFs). Traditionally, this technique requests only one polarization mode to be excited or
Hyperbolic materials offer a much wider freedom in designing optical properties of nanostructures than ones with isotropic and elliptical dispersion, both metallic or dielectric. Here, we present a detailed theoretical and numerical study of the uniq
We analyze coherent wave transport in a new physical setting associated with multimode wave systems where reflection is completely suppressed and mode-dependent losses together with mode-mixing are dictating the wave propagation. An additional physic
We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the prepar
We provide a new analysis technique to measure the effect of the isotropic polarization rotation, induced by e.g. the isotropic cosmic birefringence from axion-like particles and a miscalibration of CMB polarization angle, via mode coupling in the co