ﻻ يوجد ملخص باللغة العربية
Hyperbolic materials offer a much wider freedom in designing optical properties of nanostructures than ones with isotropic and elliptical dispersion, both metallic or dielectric. Here, we present a detailed theoretical and numerical study of the unique optical properties of spherical nanoantennas composed of such materials. Hyperbolic nanospheres exhibit a rich modal structure that, depending on the polarization and direction of incident light, can exhibit either a full plasmonic-like response with multiple electric resonances, a single, dominant electric dipole or one with mixed magnetic and electric modes with an atypical reversed modal order. We derive resonance conditions for observing these resonances in the dipolar approximation and offer insight into how the modal response evolves with the size, material composition, and illumination. Specifically, the origin of the magnetic dipole mode lies in the hyperbolic dispersion and its existence is determined by two diagonal permittivity components of different sign. Our analysis shows that the origin of this unusual behavior stems from complex coupling between electric and magnetic multipoles, which leads to very strongly scattering or absorbing modes. These observations assert that hyperbolic nanoantennas offer a promising route towards novel light-matter interaction regimes.
Multimode optical fibers have seen increasing applications in communication, imaging, high-power lasers and amplifiers. However, inherent imperfections and environmental perturbations cause random polarization and mode mixing, making the output polar
A scanning white light interferometer is developed to measure the distributed polarization coupling (DPC) in high birefringence polarization maintaining fibers (PMFs). Traditionally, this technique requests only one polarization mode to be excited or
Semiconductor-based layered hyperbolic metamaterials (HMMs) house high-wavevector volume plasmon polariton (VPP) modes in the infrared spectral range. VPP modes have successfully been exploited in the weak-coupling regime through the enhanced Purcell
Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes c
We show that symmetric planar waveguides made of a film composed of a type II hyperbolic metamaterial, where the optical axis (OA) lays parallel to the waveguide interfaces, result in a series of topological transitions in the dispersion diagram as t