ﻻ يوجد ملخص باللغة العربية
We extend to non-static black holes our benchmarking scheme that allows for cross-comparison of the efficiencies of asymptotically AdS black holes used as working substances in heat engines. We use a circular cycle in the p-V plane as the benchmark cycle. We study Kerr black holes in four spacetime dimensions as an example. As in the static case, we find an exact formula for the benchmark efficiency in an ideal-gas-like limit, which may serve as an upper bound for rotating black hole heat engines in a thermodynamic ensemble with fixed angular velocity. We use the benchmarking scheme to compare Kerr to static black holes charged under Maxwell and Born-Infeld sectors.
We present the results of initiating a benchmarking scheme that allows for cross-comparison of the efficiencies of black holes used as working substances in heat engines. We use a circular cycle in the p-V plane as the benchmark engine. We test it on
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravi
Recent work has uncovered Schottky-like peaks in the temperature dependence of key specific heats of certain black hole thermodynamic systems. They signal a finite window of available energy states for the underlying microscopic degrees of freedom. T
We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radi
We study the $mathsf{SL}(2)$ transformation properties of spherically symmetric perturbations of the Bertotti-Robinson universe and identify an invariant $mu$ that characterizes the backreaction of these linear solutions. The only backreaction allowe