ﻻ يوجد ملخص باللغة العربية
This paper studies the rate of convergence for conditional quasi-Monte Carlo (QMC), which is a counterpart of conditional Monte Carlo. We focus on discontinuous integrands defined on the whole of $R^d$, which can be unbounded. Under suitable conditions, we show that conditional QMC not only has the smoothing effect (up to infinitely times differentiable), but also can bring orders of magnitude reduction in integration error compared to plain QMC. Particularly, for some typical problems in options pricing and Greeks estimation, conditional randomized QMC that uses $n$ samples yields a mean error of $O(n^{-1+epsilon})$ for arbitrarily small $epsilon>0$. As a by-product, we find that this rate also applies to randomized QMC integration with all terms of the ANOVA decomposition of the discontinuous integrand, except the one of highest order.
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standa
This paper studies randomized quasi-Monte Carlo (QMC) sampling for discontinuous integrands having singularities along the boundary of the unit cube $[0,1]^d$. Both discontinuities and singularities are extremely common in the pricing and hedging of
Reaction networks are often used to model interacting species in fields such as biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of their concentrations are typically modeled via a system of differential e
Conditional value at risk (CVaR) is a popular measure for quantifying portfolio risk. Sensitivity analysis of CVaR is very useful in risk management and gradient-based optimization algorithms. In this paper, we study the infinitesimal perturbation an
We describe and analyze some Monte Carlo methods for manifolds in Euclidean space defined by equality and inequality constraints. First, we give an MCMC sampler for probability distributions defined by un-normalized densities on such manifolds. The s