ﻻ يوجد ملخص باللغة العربية
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any $d>0$, the first algorithm maintains a proper $O(mathcal{C} d N^{1/d})$-coloring while recoloring at most $O(d)$ vertices per update, where $mathcal{C}$ and $N$ are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an $O(mathcal{C} d)$-coloring with $O(d N^{1/d})$ recolorings per update. The two converge when $d = log N$, maintaining an $O(mathcal{C} log N)$-coloring with $O(log N)$ recolorings per update. We also present a lower bound, showing that any algorithm that maintains a $c$-coloring of a $2$-colorable graph on $N$ vertices must recolor at least $Omega(N^frac{2}{c(c-1)})$ vertices per update, for any constant $c geq 2$.
In this paper we present a deterministic CONGEST algorithm to compute an $O(kDelta)$-vertex coloring in $O(Delta/k)+log^* n$ rounds, where $Delta$ is the maximum degree of the network graph and $1leq kleq O(Delta)$ can be freely chosen. The algorithm
We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection,
The problem of (vertex) $(Delta+1)$-coloring a graph of maximum degree $Delta$ has been extremely well-studied over the years in various settings and models. Surprisingly, for the dynamic setting, almost nothing was known until recently. In SODA18, B
This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between $n$ nodes, with patterns that may change over time, the objective is
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal resu