ترغب بنشر مسار تعليمي؟ اضغط هنا

Breathing distortions in the metallic, antiferromagnetic phase of LaNiO$_3$

104   0   0.0 ( 0 )
 نشر من قبل Alaska Subedi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alaska Subedi




اسأل ChatGPT حول البحث

I study the structural and magnetic instabilities in LaNiO$_3$ using density functional theory calculations. From the non-spin-polarized structural relaxations, I find that several structures with different Glazer tilts lie close in energy. The $Pnma$ structure is marginally favored compared to the $Roverline{3}c$ structure in my calculations, suggesting the presence of finite-temperature structural fluctuations and a possible proximity to a structural quantum critical point. In the spin-polarized relaxations, both structures exhibit the $uparrow!!0!!downarrow!!0$ antiferromagnetic ordering with a rock-salt arrangement of the octahedral breathing distortions. The energy gain due to the breathing distortions is larger than that due to the antiferromagnetic ordering. These phases are semimetallic with small three-dimensional Fermi pockets, which is largely consistent with the recent observation of the coexistence of antiferromagnetism and metallicity in LaNiO$_3$ single crystals by Li textit{et al.} [arXiv:1705.02589].

قيم البحث

اقرأ أيضاً

Amongst the rare-earth perovskite nickelates, LaNiO$_3$ (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a s trange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP.
In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental under standing of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.
We report $beta$-detected NMR of ion-implanted $^{8}$Li in a single crystal and thin film of the strongly correlated metal LaNiO$_{3}$. In both samples, spin-lattice relaxation measurements reveal two distinct local metallic environments, as is evide nt from $T$-linear Korringa $1/T_{1}$ below 200 K with slopes comparable to other metals. A small, approximately temperature independent Knight shift of $sim 74$ ppm is observed, yielding a normalized Korringa product characteristic of substantial antiferromagnetic correlations, but, we find no evidence for a magnetic transition from 4 to 310 K. Two distinct, equally abundant $^{8}$Li sites is inconsistent with the widely accepted rhombohedral structure of LaNiO$_{3}$, but cannot be simply explained by either of the common alternative orthorhombic or monoclinic distortions.
Using ion-implanted $^8$Li $beta$-detected NMR, we study the evolution of the correlated metallic state of LaNiO$_3$ in a series of LaNiO$_3$/LaAlO$_3$ superlattices as a function of bilayer thickness. Spin-lattice relaxation measurements in an appli ed field of 6.55 T reveal two equal amplitude components: one with metallic ($T$-linear) $1/T_{1}$, and a second with a more complex $T$-dependence. The metallic character of the slow relaxing component is only weakly affected by the LaNiO$_3$ thickness, while the fast component is much more sensitive, exhibiting the opposite temperature dependence (increasing towards low $T$) in the thinnest, most magnetic samples. The origin of this bipartite relaxation is discussed.
Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity, microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults, but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of deposition technique for perovskite oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا