ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Metallic and Structural Properties of the Strongly Correlated Metal LaNiO$_{3}$ using $^{8}$Li $beta$-NMR

79   0   0.0 ( 0 )
 نشر من قبل Ryan McFadden
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report $beta$-detected NMR of ion-implanted $^{8}$Li in a single crystal and thin film of the strongly correlated metal LaNiO$_{3}$. In both samples, spin-lattice relaxation measurements reveal two distinct local metallic environments, as is evident from $T$-linear Korringa $1/T_{1}$ below 200 K with slopes comparable to other metals. A small, approximately temperature independent Knight shift of $sim 74$ ppm is observed, yielding a normalized Korringa product characteristic of substantial antiferromagnetic correlations, but, we find no evidence for a magnetic transition from 4 to 310 K. Two distinct, equally abundant $^{8}$Li sites is inconsistent with the widely accepted rhombohedral structure of LaNiO$_{3}$, but cannot be simply explained by either of the common alternative orthorhombic or monoclinic distortions.



قيم البحث

اقرأ أيضاً

Using ion-implanted $^8$Li $beta$-detected NMR, we study the evolution of the correlated metallic state of LaNiO$_3$ in a series of LaNiO$_3$/LaAlO$_3$ superlattices as a function of bilayer thickness. Spin-lattice relaxation measurements in an appli ed field of 6.55 T reveal two equal amplitude components: one with metallic ($T$-linear) $1/T_{1}$, and a second with a more complex $T$-dependence. The metallic character of the slow relaxing component is only weakly affected by the LaNiO$_3$ thickness, while the fast component is much more sensitive, exhibiting the opposite temperature dependence (increasing towards low $T$) in the thinnest, most magnetic samples. The origin of this bipartite relaxation is discussed.
243 - E.J. Moon , B.A. Gray , M. Kareev 2011
We explore the electrical transport and magneto-conductance in quasi two-dimensional strongly correlated ultrathin films of LaNiO$_{3}$ (LNO) to investigate the effect of hetero-epitaxial strain on electron-electron and electron-lattice interactions from the low to intermediate temperature range (2K$sim$170K). The fully epitaxial 10 unit cell thick films spanning tensile strain up to $sim4%$ are used to investigate effects of enhanced carrier localization driven by a combination of weak localization and electron-electron interactions at low temperatures. The magneto-conductance data shows the importance of the increased contribution of weak localization to low temperature quantum corrections. The obtained results demonstrate that with increasing tensile strain and reduced temperature the quantum confined LNO system gradually evolves from the Mott into the Mott-Anderson regime.
181 - Oren Ofer , K.H. Chow , I. Fan 2012
We report {beta} detected nuclear magnetic resonance ({beta}NMR) measurements of 8Li+ implanted into high purity Pt. The frequency of the 8Li {beta}NMR resonance and the spin-lattice relaxation rates 1/T1 were measured at temperatures ranging from 3 to 300 K. Remarkably, both the spin-lattice relaxation rate and the Knight shift K depend linearly on temperature T although the bulk susceptibility does not. K is found to scale with the Curie-Weiss dependence of the Pt susceptibility extrapolated to low temperatures. This is attributed to a defect response of the enhanced paramagnetism of Pt, i.e. the presence of the interstitial Li+ locally relieves the tendency for the Curie-Weiss susceptibility to saturate at low T . We propose that the low temperature saturation in c{hi} of Pt may be related to an interband coupling between the s and d bands that is disrupted locally by the presence of the Li+.
$beta$-NMR of isolated $^8$Li has been investigated in the normal state of 2H-NbSe$_2$. In a high magnetic field of 3T a single resonance is observed with a Gaussian line width of 3.5 kHz. The line shape varies weakly as function of magnetic field an d temperature but has a strong orientation dependence. The nuclear electric quadrupole splitting is unresolved implying that the electric field gradients are 10-100 times smaller than in other non-cubic crystals. The nuclear spin relaxation rate is also anomalously small but varies linearly with temperature as expected for Korringa relaxation in a metal. These results suggest that Li adopts an interstitial position between the weakly coupled NbSe$_2$ layers and away from the conduction band.
103 - Alaska Subedi 2017
I study the structural and magnetic instabilities in LaNiO$_3$ using density functional theory calculations. From the non-spin-polarized structural relaxations, I find that several structures with different Glazer tilts lie close in energy. The $Pnma $ structure is marginally favored compared to the $Roverline{3}c$ structure in my calculations, suggesting the presence of finite-temperature structural fluctuations and a possible proximity to a structural quantum critical point. In the spin-polarized relaxations, both structures exhibit the $uparrow!!0!!downarrow!!0$ antiferromagnetic ordering with a rock-salt arrangement of the octahedral breathing distortions. The energy gain due to the breathing distortions is larger than that due to the antiferromagnetic ordering. These phases are semimetallic with small three-dimensional Fermi pockets, which is largely consistent with the recent observation of the coexistence of antiferromagnetism and metallicity in LaNiO$_3$ single crystals by Li textit{et al.} [arXiv:1705.02589].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا