ﻻ يوجد ملخص باللغة العربية
We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of quantized dislocation, namely a dislon. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on the theoretical structure and computational power. We first provide a pedagogical introduction of the necessity and benefits taking the dislon approach, that why the dislon Hamiltonian takes its current form. Then we study the electron-dislocation and phonon-dislocation scattering problems, using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Comparing with the traditional dislocation scattering studies which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction and higher-order scattering events, but also allows proper consideration of dislocations long-range strain field and the dynamic aspects on equal footing. This means that instead of developing individual model for a specific dislocation scattering problem, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc., under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.
We develop a non-singular theory of three-dimensional dislocation loops in a particular version of Mindlins anisotropic gradient elasticity with up to six length scale parameters. The theory is systematically developed as a generalization of the clas
Density functional theory is generalized to incorporate electron-phonon coupling. A Kohn-Sham equation yielding the electronic density $n_U(mathbf{r})$, a conditional probability density depending parametrically on the phonon normal mode amplitudes $
Type-I clathrate compounds have attracted a great deal of interest in connection with the search for efficient thermoelectric materials. These compounds constitute networked cages consisting of nano-scale tetrakaidecahedrons (14 hedrons) and dodecahe
The effect of electron-phonon interactions on optical absorption spectra requires a special treatment in materials with strong electron-hole interactions. We conceptualize these effects as exciton-phonon coupling. Through phonon absorption and emissi
The out-of-equilibrium dynamics of electrons and phonons upon laser excitation are often described by the two-temperature model, which assumes that both subsystems are separately in thermal equilibrium. However, recent experiments show that this desc