ﻻ يوجد ملخص باللغة العربية
This paper provides an initial investigation on the application of convolutional neural networks (CNNs) for fingerprint-based positioning using measured massive MIMO channels. When represented in appropriate domains, massive MIMO channels have a sparse structure which can be efficiently learned by CNNs for positioning purposes. We evaluate the positioning accuracy of state-of-the-art CNNs with channel fingerprints generated from a channel model with a rich clustered structure: the COST 2100 channel model. We find that moderately deep CNNs can achieve fractional-wavelength positioning accuracies, provided that an enough representative data set is available for training.
Compared with avid research activities of deep convolutional neural networks (DCNNs) in practice, the study of theoretical behaviors of DCNNs lags heavily behind. In particular, the universal consistency of DCNNs remains open. In this paper, we prove
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains
Graph convolutional networks (GCNs) are a widely used method for graph representation learning. To elucidate the capabilities and limitations of GCNs, we investigate their power, as a function of their number of layers, to distinguish between differe
In this paper, we consider the use of deep neural networks in the context of Multiple-Input-Multiple-Output (MIMO) detection. We give a brief introduction to deep learning and propose a modern neural network architecture suitable for this detection t
Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) system for the fifth generation (5G) cellular communications can also enable single-anchor positioning and object tracking due to its large bandwidth and inherently high angular resolutio