ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex-BP-Neural-Network-based Hybrid Precoding for Millimeter Wave Multiuser Massive MIMO Systems

137   0   0.0 ( 0 )
 نشر من قبل Xiaohu Ge
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains by handing over part of the coding work to the phase shifting network, which can effectively improve energy efficiency. However, conventional hybrid precoding algorithms based on mathematical means often suffer from performance loss and high computational complexity. In this paper, a novel BP-neural-network-enabled hybrid precoding algorithm is proposed, in which the full-digital zero-forcing(ZF) precoding is set as the training target. Considering that signals at the base station are complex, we choose the complex neural network that has a richer representational capacity. Besides, we present the activation function of the complex neural network and the gradient derivation of the back propagation process. Simulation results demonstrate that the performance of the proposed hybrid precoding algorithm can optimally approximate the ZF precoding.



قيم البحث

اقرأ أيضاً

92 - Wenyan Ma , Chenhao Qi 2019
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of o ver-sampled beamspace receiving matrix. Then based on the framework, three channel estimation schemes including identity matrix approximation (IA)-based scheme, scattered zero off-diagonal (SZO)-based scheme and concentrated zero off-diagonal (CZO)-based scheme are proposed. These schemes together with the existing channel estimation schemes are compared in terms of computational complexity, estimation error and total time slots for channel training. Simulation results show that the proposed schemes outperform the existing schemes and can approach the performance of the ideal case. In particular, total time slots for channel training can be substantially reduced.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a speci al case of hybrid BF called per-stream hybrid BF (PSHBF) which is easier to implement than the general hybrid BF because it circumvents the need for joint analog-digital beamformer optimization. Employing BF at the base station enables the transmission of multiple data streams to several users in the same resource block. In this paper, we provide an offline study of proportional fair multi-user scheduling in a mmWave system with PSHBF to understand the impact of various system parameters on the performance. We formulate multi-user scheduling as an optimization problem. To tackle the non-convexity, we provide a feasible solution and show through numerical examples that the performance of the provided solution is very close to an upper-bound. Using this framework, we provide extensive numerical investigations revealing several engineering insights.
163 - Jingbo Du , Wei Xu , Chunming Zhao 2019
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alterna ting maximization framework where the analog precoding is optimized by Riemannian manifold optimization. If the digital precoding is optimized by a locally optimal algorithm, we obtain a locally optimal alternating maximization algorithm. In contrast, if we use a weighted minimum mean square error (MMSE)-based iterative algorithm for digital precoding, we obtain a suboptimal alternating maximization algorithm with reduced complexity in each iteration. By characterizing the upper bound of the weighted arithmetic and geometric means of mean square errors (MSEs), it is shown that the two alternating maximization algorithms have similar performance when the user specific weights do not have big differences. Verified by numerical results, the performance gap between the two alternating maximization algorithms becomes large when the ratio of the maximal and minimal weights among users is very large. Moreover, we also propose a low-complexity closed-form method without iterations. It employs matrix decomposition for the analog beamforming and weighted MMSE for the digital beamforming. Although it is not supposed to maximize the weighted spectral efficiency, it exhibits small performance deterioration compared to the two iterative alternating maximization algorithms and it qualifies as a good initialization for iterative algorithms, saving thereby iterations.
This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The precoding problem is a joint optimization of analog and digital precoders, and we treat it as a matrix factorization problem with power and constant modulus constraints. Our work presents three main contributions: First, we present a sufficient condition and a necessary condition for hybrid precoding schemes to realize unconstrained optimal precoders exactly when the number of data streams Ns satisfies Ns = minfrank(H);Nrfg, where H represents the channel matrix and Nrf is the number of radio frequency (RF) chains. Second, we show that the coupled power constraint in our matrix factorization problem can be removed without loss of optimality. Third, we propose a Broyden-Fletcher-Goldfarb-Shanno (BFGS)-based algorithm to solve our matrix factorization problem using gradient and Hessian information. Several numerical results are provided to show that our proposed algorithm outperforms existing hybrid precoding algorithms.
Millimeter-wave and terahertz technologies have been attracting attention from the wireless research community since they can offer large underutilized bandwidths which can enable the support of ultra-high-speed connections in future wireless communi cation systems. While the high signal attenuation occurring at these frequencies requires the adoption of very large (or the so-called ultra-massive) antenna arrays, in order to accomplish low complexity and low power consumption, hybrid analog/digital designs must be adopted. In this paper we present a hybrid design algorithm suitable for both mmWave and THz multiuser multiple-input multiple-output (MIMO) systems, which comprises separate computation steps for the digital precoder, analog precoder and multiuser interference mitigation. The design can also incorporate different analog architectures such as phase shifters, switches and inverters, antenna selection and so on. Furthermore, it is also applicable for different structures namely, fully connected, arrays of subarrays (AoSA) and dynamic arrays of subarrays (DAoSA), making it suitable for the support of ultra-massive MIMO (UM-MIMO) in severely hardware constrained THz systems. We will show that, by using the proposed approach, it is possible to achieve good trade-offs between spectral efficiency and simplified implementation, even as the number of users and data streams increases.)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا