ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser Streaming: Turning a Laser Beam into a Flow of Liquid

130   0   0.0 ( 0 )
 نشر من قبل Yanan Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. Here we report the discovery of a new optofluidics principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. In order to generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes, the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, i.e. photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquids, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

قيم البحث

اقرأ أيضاً

Nonlinear topological photonic and phononic systems have recently aroused intense interests in exploring new phenomena that have no counterparts in electronic systems. The squeezed bosonic interaction in these systems is particularly interesting, bec ause it can modify the vacuum fluctuations of topological states, drive them into instabilities, and lead to topological parametric lasers. However, these phenomena remain experimentally elusive because of limited nonlinearities in most existing topological bosonic systems. Here, we experimentally realized topological parametric lasers based on nonlinear nanoelectromechanical Dirac-vortex cavities with strong squeezed interaction. Specifically, we parametrically drove the Dirac-vortex cavities to provide phase-sensitive amplification for topological phonons, and observed phonon lasing above the threshold. Additionally, we confirmed that the lasing frequency is robust against fabrication disorders and that the free spectral range defies the universal inverse scaling law with increased cavity size, which benefit the realization of large-area single-mode lasers. Our results represent an important advance in experimental investigations of topological physics with large bosonic nonlinearities and parametric gain.
We study theoretically and experimentally how a thin layer of liquid flows along a flexible beam. The flow is modelled using lubrication theory and the substrate is modelled as an elastica which deforms according to the Euler-Bernoulli equation. A co nstant flux of liquid is supplied at one end of the beam, which is clamped horizontally, while the other end of the beam is free. As the liquid film spreads, its weight causes the beam deflection to increase, which in turn enhances the spreading rate of the liquid. This feedback mechanism causes the front position ${sigma}$(t) and the deflection angle at the front ${phi}$(t) to go through a number of different power-law behaviours. For early times, the liquid spreads like a horizontal gravity current, with ${sigma}$(t) = $t^{4/5}$ and ${phi}$(t) = $t^{13/5}$. For intermediate times, the deflection of the beam leads to rapid acceleration of the liquid layer, with ${sigma}$(t) = $t^4$ and ${phi}$(t) = $t^9$. Finally, when the beam has sagged to become almost vertical, the liquid film flows downward with ${sigma}$(t) = $t$ and ${phi}$(t) ~ ${pi}$/2. We demonstrate good agreement between these theoretical predictions and experimental results.
This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano- patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discusse d. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/sec, that is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells and drug delivery is envisaged.
The cavitation-driven expansion dynamics of liquid tin microdroplets is investigated, set in motion by the ablative impact of a 15-ps laser pulse. We combine high-resolution stroboscopic shadowgraphy with an intuitive fluid dynamic model that include s the onset of fragmentation, and find good agreement between model and experimental data for two different droplet sizes over a wide range of laser pulse energies. The dependence of the initial expansion velocity on these experimental parameters is heuristically captured in a single power law. Further, the obtained late-time mass distributions are shown to be governed by a single parameter. These studies are performed under conditions relevant for plasma light sources for extreme-ultraviolet nanolithography.
We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC) based velocime try are (1) the use of diffusion dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross correlation, and develop an SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nanoparticles. Secondly, we developed an analytical model of the SLIC measurement bias error due to image scanning of diffusion dominated tracer particles. We show that the bias error depends only on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use this model to correct the induced errors. We validated our technique using synthetic images and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the images tested in this study. Moreover, our optimized RPC filter is reducing the number of image pairs required for the convergence of the ensemble correlation by two orders of magnitude compared to the standard cross correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا