ﻻ يوجد ملخص باللغة العربية
This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano- patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/sec, that is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells and drug delivery is envisaged.
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric
We demonstrate spontaneous bidirectional motion of droplets on liquid infused surfaces in the presence of a topographical gradient, in which the droplets can move either toward the denser or the sparser solid fraction area. Our analytical theory expl
We study the hydrodynamic coupling between particles and solid, rough boundaries characterized by random surface textures. Using the Lorentz reciprocal theorem, we derive analytical expressions for the grand mobility tensor of a spherical particle an
The cavitation-driven expansion dynamics of liquid tin microdroplets is investigated, set in motion by the ablative impact of a 15-ps laser pulse. We combine high-resolution stroboscopic shadowgraphy with an intuitive fluid dynamic model that include
We introduce a simple two region model where the diffusion constant in a small region around each step on a vicinal surface can differ from that found on the terraces. Steady state results for this model provide a physically suggestive mapping onto k