ﻻ يوجد ملخص باللغة العربية
We introduce a recursive decomposition algorithm for the Betti diagram of a complete intersection using the diagram of a complete intersection defined by a subset of the original generators. This alternative algorithm is the main tool that we use to investigate stability and compatibility of the Boij-Soederberg decompositions of related diagrams; indeed, when the biggest generating degree is sufficiently large, the alternative algorithm produces the Boij-Soederberg decomposition. We also provide a detailed analysis of the Boij-Soederberg decomposition for Betti diagrams of codimension four complete intersections where the largest generating degree satisfies the size condition.
We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij-Soderberg theory. That is, given a Betti diagram, we determine if it is possible to decompose it into the Betti diagrams of complete intersections. To
Let $(A,mathfrak{m})$ be an abstract complete intersection and let $P$ be a prime ideal of $A$. In [1] Avramov proved that $A_P$ is an abstract complete intersection. In this paper we give an elementary proof of this result.
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb
We define logarithmic tangent sheaves associated with complete intersections in connection with Jacobian syzygies and distributions. We analyse the notions of local freeness, freeness and stability of these sheaves. We carry out a complete study of l
Given a 0-dimensional affine K-algebra R=K[x_1,...,x_n]/I, where I is an ideal in a polynomial ring K[x_1,...,x_n] over a field K, or, equivalently, given a 0-dimensional affine scheme, we construct effective algorithms for checking whether R is a co