ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursive strategy for decomposing Betti tables of complete intersections

103   0   0.0 ( 0 )
 نشر من قبل Courtney Gibbons
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a recursive decomposition algorithm for the Betti diagram of a complete intersection using the diagram of a complete intersection defined by a subset of the original generators. This alternative algorithm is the main tool that we use to investigate stability and compatibility of the Boij-Soederberg decompositions of related diagrams; indeed, when the biggest generating degree is sufficiently large, the alternative algorithm produces the Boij-Soederberg decomposition. We also provide a detailed analysis of the Boij-Soederberg decomposition for Betti diagrams of codimension four complete intersections where the largest generating degree satisfies the size condition.

قيم البحث

اقرأ أيضاً

We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij-Soderberg theory. That is, given a Betti diagram, we determine if it is possible to decompose it into the Betti diagrams of complete intersections. To do so, we determine the extremal rays of the cone generated by the diagrams of complete intersections and provide a rudimentary algorithm for decomposition.
Let $(A,mathfrak{m})$ be an abstract complete intersection and let $P$ be a prime ideal of $A$. In [1] Avramov proved that $A_P$ is an abstract complete intersection. In this paper we give an elementary proof of this result.
190 - Marc Chardin , Navid Nemati 2020
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb b{P}^m$. We explicitly compute many values of the Hilbert functions of $0$-dimensional complete intersections. We show that these values only depend upon $n,m$, and the bidegrees of the generators of $I$. As a result, we provide a sharp upper bound for the multigraded regularity of $0$-dimensional complete intersections.
114 - Daniele Faenzi 2021
We define logarithmic tangent sheaves associated with complete intersections in connection with Jacobian syzygies and distributions. We analyse the notions of local freeness, freeness and stability of these sheaves. We carry out a complete study of l ogarithmic sheaves associated with pencils of quadrics and compute their projective dimension from the classical invariants such as the Segre symbol and new invariants (splitting type and degree vector) designed for the classification of irregular pencils. This leads to a complete classification of free (equivalently, locally free) pencils of quadrics. Finally we produce examples of locally free, non free pencils of surfaces in P3 of any degree k at least 3, answering (in the negative) a question of Calvo-Andrade, Cerveau, Giraldo and Lins Neto about codimension foliations on P3 .
Given a 0-dimensional affine K-algebra R=K[x_1,...,x_n]/I, where I is an ideal in a polynomial ring K[x_1,...,x_n] over a field K, or, equivalently, given a 0-dimensional affine scheme, we construct effective algorithms for checking whether R is a co mplete intersection at a maximal ideal, whether R is locally a complete intersection, and whether R is a strict complete intersection. These algorithms are based on Wiebes characterisation of 0-dimensional local complete intersections via the 0-th Fitting ideal of the maximal ideal. They allow us to detect which generators of I form a regular sequence resp. a strict regular sequence, and they work over an arbitrary base field K. Using degree filtered border bases, we can detect strict complete intersections in certain families of 0-dimensional ideals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا