ﻻ يوجد ملخص باللغة العربية
We consider the transport of conserved charges in spatially inhomogeneous quantum systems with a discrete lattice symmetry. We analyse the retarded two point functions involving the charge and the associated currents at long wavelengths, compared to the scale of the lattice, and, when the DC conductivity is finite, extract the hydrodynamic modes associated with charge diffusion. We show that the dispersion relations of these modes are related to the eigenvalues of a specific matrix constructed from the DC conductivity and certain thermodynamic susceptibilities, thus obtaining generalised Einstein relations. We illustrate these general results in the specific context of relativistic hydrodynamics where translation invariance is broken using spatially inhomogeneous and periodic deformations of the stress tensor and the conserved $U(1)$ currents. Equivalently, this corresponds to considering hydrodynamics on a curved manifold, with a spatially periodic metric and chemical potential.
Axial anomaly and nesting is elucidated in the context of the inhomogeneous chiral phase. Using the Gross-Neveu models in 1+1 dimensions, we shall discuss axial anomaly and nesting from two different points of view: one is homogeneous chiral transiti
Generalised hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symm
We analyze the combined effects of hydrodynamic fluctuations and chiral magnetic effect (CME) for a chiral medium in the presence of a background magnetic field. Based on the recently developed non-equilibrium effective field theory, we show fluctuat
We define a particular combination of charge and heat currents that is decoupled with the heat current. This `heat-decoupled (HD) current can be transported by diffusion at long distances, when some thermo-electric conductivities and susceptibilities
We present the full charge and energy diffusion constants for the Einstein-Maxwell dilaton (EMD) action for Lifshitz spacetime characterized by a dynamical critical exponent $z$. Therein we compute the fully renormalized static thermodynamic potentia