ﻻ يوجد ملخص باللغة العربية
We present the full charge and energy diffusion constants for the Einstein-Maxwell dilaton (EMD) action for Lifshitz spacetime characterized by a dynamical critical exponent $z$. Therein we compute the fully renormalized static thermodynamic potential explicitly, which confirms the forms of all thermodynamic quantities including the Bekenstein-Hawking entropy and Smarr-like relationship. Our exact computation demonstrates a modification to the Lifshitz Ward identity for the EMD theory. For transport, we target our analysis at finite chemical potential and include axion fields to generate momentum dissipation. While our exact results corroborate anticipated bounds, we are able to demonstrate that the diffusivities are governed by the engineering dimension of the diffusion coefficient, $[D]=2-z$. Consequently, a $beta$-function defined as the derivative of the trace of the diffusion matrix with respect to the effective lattice spacing changes sign precisely at $z=2$. At $z=2$, the diffusion equation exhibits perfect scale invariance and the corresponding diffusion constant is the pure number $1/d_s$ for both the charge and energy sectors, where $d_s$ is the number of spatial dimensions. Further, we find that as $ztoinfty$, the charge diffusion constant vanishes, indicating charge localization. Deviation from universal decoupled transport obtains when either the chemical potential or momentum dissipation are large relative to temperature, an echo of strong thermoelectric interactions.
We define a particular combination of charge and heat currents that is decoupled with the heat current. This `heat-decoupled (HD) current can be transported by diffusion at long distances, when some thermo-electric conductivities and susceptibilities
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen
Quantum decoherence is the loss of a systems purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon form
We provide a general algorithm for constructing the holographic dictionary for any asymptotically locally Lifshitz background, with or without hyperscaling violation, and for any values of the dynamical exponents $z$ and $theta$, as well as the vecto
We investigate the quantum integrability of the Landau-Lifshitz model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which aris