ﻻ يوجد ملخص باللغة العربية
The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested examples and the training examples. This raises a major question about which distance measures to be used for the KNN classifier among a large number of distance and similarity measures available? This review attempts to answer this question through evaluating the performance (measured by accuracy, precision and recall) of the KNN using a large number of distance measures, tested on a number of real-world datasets, with and without adding different levels of noise. The experimental results show that the performance of KNN classifier depends significantly on the distance used, and the results showed large gaps between the performances of different distances. We found that a recently proposed non-convex distance performed the best when applied on most datasets comparing to the other tested distances. In addition, the performance of the KNN with this top performing distance degraded only about $20%$ while the noise level reaches $90%$, this is true for most of the distances used as well. This means that the KNN classifier using any of the top $10$ distances tolerate noise to a certain degree. Moreover, the results show that some distances are less affected by the added noise comparing to other distances.
K-Nearest Neighbor (kNN)-based deep learning methods have been applied to many applications due to their simplicity and geometric interpretability. However, the robustness of kNN-based classification models has not been thoroughly explored and kNN at
The family of methods collectively known as classifier chains has become a popular approach to multi-label learning problems. This approach involves linking together off-the-shelf binary classifiers in a chain structure, such that class label predict
We consider a problem of multiclass classification, where the training sample $S_n = {(X_i, Y_i)}_{i=1}^n$ is generated from the model $mathbb P(Y = m | X = x) = eta_m(x)$, $1 leq m leq M$, and $eta_1(x), dots, eta_M(x)$ are unknown $alpha$-Holder co
We use the $k$-nearest neighbor probability distribution function ($k$NN-PDF, Banerjee & Abel 2021) to assess convergence in a scale-free $N$-body simulation. Compared to our previous two-point analysis, the $k$NN-PDF allows us to quantify our result
When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the