ﻻ يوجد ملخص باللغة العربية
If $pi: Y to X$ is an unramified double cover of a smooth curve of genus $g$, then the Prym variety $P_pi$ is a principally polarized abelian variety of dimension $g-1$. When $X$ is defined over an algebraically closed field $k$ of characteristic $p$, it is not known in general which $p$-ranks can occur for $P_pi$ under restrictions on the $p$-rank of $X$. In this paper, when $X$ is a non-hyperelliptic curve of genus $g=3$, we analyze the relationship between the Hasse-Witt matrices of $X$ and $P_pi$. As an application, when $p equiv 5 bmod 6$, we prove that there exists a curve $X$ of genus $3$ and $p$-rank $f=3$ having an unramified double cover $pi:Y to X$ for which $P_pi$ has $p$-rank $0$ (and is thus supersingular); for $3 leq p leq 19$, we verify the same for each $0 leq f leq 3$. Using theoretical results about $p$-rank stratifications of moduli spaces, we prove, for small $p$ and arbitrary $g geq 3$, that there exists an unramified double cover $pi: Y to X$ such that both $X$ and $P_pi$ have small $p$-rank.
We prove the $p$-curvature conjecture for rank two vector bundles with connection on generic curves, by combining deformation techniques for families of varieties and topological arguments.
In 1922, Mordell conjectured the striking statement that for a polynomial equation $f(x,y)=0$, if the topology of the set of complex number solutions is complicated enough, then the set of rational number solutions is finite. This was proved by Falti
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time--space complexity is roughly quadratic in the logarithm of the cardinality o
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without r