ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast computation of a rational point of a variety over a finite field

80   0   0.0 ( 0 )
 نشر من قبل Guillermo Matera
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time--space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system (called its degree), which is always bounded by the Bezout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety.



قيم البحث

اقرأ أيضاً

111 - Vladimir Drinfeld 2015
Let $Pi$ be the fundamental group of a smooth variety X over $F_p$. Given a non-Archimedean place $lambda$ of the field of algebraic numbers which is prime to p, consider the $lambda$-adic pro-semisimple completion of $Pi$ as an object of the groupoi d whose objects are pro-semisimple groups and whose morphisms are isomorphisms up to conjugation by elements of the neutral connected component. We prove that this object does not depend on $lambda$. If dim X=1 we also prove a crystalline generalization of this fact. We deduce this from the Langlands conjecture for function fields (proved by L. Lafforgue) and its crystalline analog (proved by T. Abe) using a reconstruction theorem in the spirit of Kazhdan-Larsen-Varshavsky. We also formulate two related conjectures, each of which is a reciprocity law involving a sum over all $l$-adic cohomology theories (including the crystalline theory for $l=p$).
Most hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriat e Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-a dic field, this is math/0405318, Theorem 1.1. If the model $sX$ is regular, one has a congruence $|sX(k)|equiv 1 $ modulo $|k|$ for the number of $k$-rational points 0704.1273, Theorem 1.1. The congruence is violated if one drops the regularity assumption.
Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) comput ed the cohomology of various Gamma_0 (n), along with the action of the Hecke operators. The goal of that paper was to test the modularity of elliptic curves over F. In the present paper, we complement and extend this prior work in two ways. First, we tabulate more elliptic curves than were found in our prior work by using various heuristics (old and new cohomology classes, dimensions of Eisenstein subspaces) to predict the existence of elliptic curves of various conductors, and then by using more sophisticated search techniques (for instance, torsion subgroups, twisting, and the Cremona-Lingham algorithm) to find them. We then compute further invariants of these curves, such as their rank and representatives of all isogeny classes. Our enumeration includes conjecturally the first elliptic curves of ranks 1 and 2 over this field, which occur at levels of norm 719 and 9173 respectively.
If $pi: Y to X$ is an unramified double cover of a smooth curve of genus $g$, then the Prym variety $P_pi$ is a principally polarized abelian variety of dimension $g-1$. When $X$ is defined over an algebraically closed field $k$ of characteristic $p$ , it is not known in general which $p$-ranks can occur for $P_pi$ under restrictions on the $p$-rank of $X$. In this paper, when $X$ is a non-hyperelliptic curve of genus $g=3$, we analyze the relationship between the Hasse-Witt matrices of $X$ and $P_pi$. As an application, when $p equiv 5 bmod 6$, we prove that there exists a curve $X$ of genus $3$ and $p$-rank $f=3$ having an unramified double cover $pi:Y to X$ for which $P_pi$ has $p$-rank $0$ (and is thus supersingular); for $3 leq p leq 19$, we verify the same for each $0 leq f leq 3$. Using theoretical results about $p$-rank stratifications of moduli spaces, we prove, for small $p$ and arbitrary $g geq 3$, that there exists an unramified double cover $pi: Y to X$ such that both $X$ and $P_pi$ have small $p$-rank.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا