ﻻ يوجد ملخص باللغة العربية
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time--space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system (called its degree), which is always bounded by the Bezout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety.
Let $Pi$ be the fundamental group of a smooth variety X over $F_p$. Given a non-Archimedean place $lambda$ of the field of algebraic numbers which is prime to p, consider the $lambda$-adic pro-semisimple completion of $Pi$ as an object of the groupoi
Most hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriat
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-a
Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) comput
If $pi: Y to X$ is an unramified double cover of a smooth curve of genus $g$, then the Prym variety $P_pi$ is a principally polarized abelian variety of dimension $g-1$. When $X$ is defined over an algebraically closed field $k$ of characteristic $p$