ﻻ يوجد ملخص باللغة العربية
We introduce a theory of multigraded Cayley-Chow forms associated to subvarieties of products of projective spaces. Two new phenomena arise: first, the construction turns out to require certain inequalities on the dimensions of projections; and second, in positive characteristic the multigraded Cayley-Chow forms can have higher multiplicities. The theory also provides a natural framework for understanding multifocal tensors in computer vision.
In this paper we study the equations of the elimination ideal associated with $n+1$ generic multihomogeneous polynomials defined over a product of projective spaces of dimension $n$. We first prove a duality property and then make this duality explic
We complement our previous computation of the Chow-Witt rings of classifying spaces of special linear groups by an analogous computation for the general linear groups. This case involves discussion of non-trivial dualities. The computation proceeds a
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension $le 1$. In this process, we establish the decomposition of Chow groups for the cases of Cayleys trick and standard fl
Let G be an adjoint simple algebraic group of inner type. We express the Chow motive (with integral coefficients) of some anisotropic projective G-homogeneous varieties in terms of motives of simpler G-homogeneous varieties, namely, those that corres
We consider proper, algebraic semismall maps f from a complex algebraic manifold X. We show that the topological Decomposition Theorem implies a motivic decomposition theorem for the rational algebraic cycles of X and, in the case X is compact, for t