ﻻ يوجد ملخص باللغة العربية
We consider proper, algebraic semismall maps f from a complex algebraic manifold X. We show that the topological Decomposition Theorem implies a motivic decomposition theorem for the rational algebraic cycles of X and, in the case X is compact, for the Chow motive of X.The result is a Chow-theoretic analogue of Borho-MacPhersons observation concerning the cohomology of the fibers and their relation to the relevant strata for f. Under suitable assumptions on the stratification, we prove an explicit version of the motivic decomposition theorem. The assumptions are fulfilled in many cases of interest, e.g. in connection with resolutions of orbifolds and of some configuration spaces. We compute the Chow motives and groups in some of these cases, e.g. the nested Hilbert schemes of points of a surface. In an appendix with T. Mochizuki, we do the same for the parabolic Hilbert scheme of points on a surface. The results above hold for mixed Hodge structures and explain, in some cases, the equality between orbifold Betti/Hodge numbers and ordinary Betti/Hodge numbers for the crepant semismall resolutions in terms of the existence of a natural map of mixed Hodge structures. Most results hold over an algebraically closed field and in the Kaehler context.
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension $le 1$. In this process, we establish the decomposition of Chow groups for the cases of Cayleys trick and standard fl
In this paper, we compute the motive of the character variety of representations of the fundamental group of the complement of an arbitrary torus knot into $SL_4(k)$, for any algebraically closed field $k$. For that purpose, we introduce a stratifica
We complement our previous computation of the Chow-Witt rings of classifying spaces of special linear groups by an analogous computation for the general linear groups. This case involves discussion of non-trivial dualities. The computation proceeds a
We prove results describing the structure of a Chow ring associated to a product of graphs, which arises from the Gross-Schoen desingularization of a product of regular proper semi-stable curves over discrete valuation rings. By the works of Johannes
We introduce a theory of multigraded Cayley-Chow forms associated to subvarieties of products of projective spaces. Two new phenomena arise: first, the construction turns out to require certain inequalities on the dimensions of projections; and secon