ترغب بنشر مسار تعليمي؟ اضغط هنا

Face Parsing via Recurrent Propagation

61   0   0.0 ( 0 )
 نشر من قبل Sifei Liu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face parsing is an important problem in computer vision that finds numerous applications including recognition and editing. Recently, deep convolutional neural networks (CNNs) have been applied to image parsing and segmentation with the state-of-the-art performance. In this paper, we propose a face parsing algorithm that combines hierarchical representations learned by a CNN, and accurate label propagations achieved by a spatially variant recurrent neural network (RNN). The RNN-based propagation approach enables efficient inference over a global space with the guidance of semantic edges generated by a local convolutional model. Since the convolutional architecture can be shallow and the spatial RNN can have few parameters, the framework is much faster and more light-weighted than the state-of-the-art CNNs for the same task. We apply the proposed model to coarse-grained and fine-grained face parsing. For fine-grained face parsing, we develop a two-stage approach by first identifying the main regions and then segmenting the detail components, which achieves better performance in terms of accuracy and efficiency. With a single GPU, the proposed algorithm parses face images accurately at 300 frames per second, which facilitates real-time applications.

قيم البحث

اقرأ أيضاً

Face segmentation is the task of densely labeling pixels on the face according to their semantics. While current methods place an emphasis on developing sophisticated architectures, use conditional random fields for smoothness, or rather employ adver sarial training, we follow an alternative path towards robust face segmentation and parsing. Occlusions, along with other parts of the face, have a proper structure that needs to be propagated in the model during training. Unlike state-of-the-art methods that treat face segmentation as an independent pixel prediction problem, we argue instead that it should hold highly correlated outputs within the same object pixels. We thereby offer a novel learning mechanism to enforce structure in the prediction via consensus, guided by a robust loss function that forces pixel objects to be consistent with each other. Our face parser is trained by transferring knowledge from another model, yet it encourages spatial consistency while fitting the labels. Different than current practice, our method enjoys pixel-wise predictions, yet paves the way for fewer artifacts, less sparse masks, and spatially coherent outputs.
119 - Lu Yang , Qing Song , Xueshi Xin 2021
This is a very short technical report, which introduces the solution of the Team BUPT-CASIA for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. Face parsing has recently attracted increasing in terest due to its numerous application potentials. Generally speaking, it has a lot in common with human parsing, such as task setting, data characteristics, number of categories and so on. Therefore, this work applies state-of-the-art human parsing method to face parsing task to explore the similarities and differences between them. Our submission achieves 86.84% score and wins the 2nd place in the challenge.
A caricature is an artistic form of a persons picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .
This is a short technical report introducing the solution of the Team TCParser for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this paper, we introduce a strong backbone which is cross-win dow based Shuffle Transformer for presenting accurate face parsing representation. To further obtain the finer segmentation results, especially on the edges, we introduce a Feature Alignment Aggregation (FAA) module. It can effectively relieve the feature misalignment issue caused by multi-resolution feature aggregation. Benefiting from the stronger backbone and better feature aggregation, the proposed method achieves 86.9519% score in the Short-video Face Parsing track of the 3rd Person in Context (PIC) Workshop and Challenge, ranked the first place.
This is a short technical report introducing the solution of Team Rat for Short-video Parsing Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this report, we propose an Edge-Aware Network (EANet) that u ses edge information to refine the segmentation edge. To further obtain the finer edge results, we introduce edge attention loss that only compute cross entropy on the edges, it can effectively reduce the classification error around edge and get more smooth boundary. Benefiting from the edge information and edge attention loss, the proposed EANet achieves 86.16% accuracy in the Short-video Face Parsing track of the 3rd Person in Context (PIC) Workshop and Challenge, ranked the third place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا