ترغب بنشر مسار تعليمي؟ اضغط هنا

3rd Place Solution for Short-video Face Parsing Challenge

89   0   0.0 ( 0 )
 نشر من قبل Xiao Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a short technical report introducing the solution of Team Rat for Short-video Parsing Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this report, we propose an Edge-Aware Network (EANet) that uses edge information to refine the segmentation edge. To further obtain the finer edge results, we introduce edge attention loss that only compute cross entropy on the edges, it can effectively reduce the classification error around edge and get more smooth boundary. Benefiting from the edge information and edge attention loss, the proposed EANet achieves 86.16% accuracy in the Short-video Face Parsing track of the 3rd Person in Context (PIC) Workshop and Challenge, ranked the third place.



قيم البحث

اقرأ أيضاً

We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and us e them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.
This is a short technical report introducing the solution of the Team TCParser for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this paper, we introduce a strong backbone which is cross-win dow based Shuffle Transformer for presenting accurate face parsing representation. To further obtain the finer segmentation results, especially on the edges, we introduce a Feature Alignment Aggregation (FAA) module. It can effectively relieve the feature misalignment issue caused by multi-resolution feature aggregation. Benefiting from the stronger backbone and better feature aggregation, the proposed method achieves 86.9519% score in the Short-video Face Parsing track of the 3rd Person in Context (PIC) Workshop and Challenge, ranked the first place.
118 - Junru Gu , Qiao Sun , Hang Zhao 2021
In autonomous driving, goal-based multi-trajectory prediction methods are proved to be effective recently, where they first score goal candidates, then select a final set of goals, and finally complete trajectories based on the selected goals. Howeve r, these methods usually involve goal predictions based on sparse predefined anchors. In this work, we propose an anchor-free model, named DenseTNT, which performs dense goal probability estimation for trajectory prediction. Our model achieves state-of-the-art performance, and ranks 1st on the Waymo Open Dataset Motion Prediction Challenge.
In an autonomous driving system, it is essential to recognize vehicles, pedestrians and cyclists from images. Besides the high accuracy of the prediction, the requirement of real-time running brings new challenges for convolutional network models. In this report, we introduce a real-time method to detect the 2D objects from images. We aggregate several popular one-stage object detectors and train the models of variety input strategies independently, to yield better performance for accurate multi-scale detection of each category, especially for small objects. For model acceleration, we leverage TensorRT to optimize the inference time of our detection pipeline. As shown in the leaderboard, our proposed detection framework ranks the 2nd place with 75.00% L1 mAP and 69.72% L2 mAP in the real-time 2D detection track of the Waymo Open Dataset Challenges, while our framework achieves the latency of 45.8ms/frame on an Nvidia Tesla V100 GPU.
91 - Kai Jiang 2020
Compared with MS-COCO, the dataset for the competition has a larger proportion of large objects which area is greater than 96x96 pixels. As getting fine boundaries is vitally important for large object segmentation, Mask R-CNN with PointRend is selec ted as the base segmentation framework to output high-quality object boundaries. Besides, a better engine that integrates ResNeSt, FPN and DCNv2, and a range of effective tricks that including multi-scale training and test time augmentation are applied to improve segmentation performance. Our best performance is an ensemble of four models (three PointRend-based models and SOLOv2), which won the 2nd place in IJCAI-PRICAI 3D AI Challenge 2020: Instance Segmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا