ﻻ يوجد ملخص باللغة العربية
The coercive field and angular dependence of the coercive field of single-grain Nd$_{2}$Fe$_{14}$B permanent magnets are computed using finite element micromagnetics. It is shown that the thickness of surface defects plays a critical role in determining the reversal process. For small defect thicknesses reversal is heavily driven by nucleation, whereas with increasing defect thickness domain wall de-pinning becomes more important. This change results in an observable shift between two well-known behavioral models. A similar trend is observed in experimental measurements of bulk samples, where a Nd-Cu infiltration process has been used to enhance coercivity by modifying the grain boundaries. When account is taken of the imperfect grain alignment of real magnets, the single-grain computed results appears to closely match experimental behaviour.
The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure without any structural defects and without any soft magnet
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficientl
Multiscale simulation is a key research tool for the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density
Based on high-throughput density functional theory calculations, we investigated the effects of light interstitial H, B, C, and N atoms on the magnetic properties of cubic Heusler alloys, with the aim to design new rare-earth free permanent magnets.
We report the results of an unpolarized small-angle neutron scattering (SANS) study on Mn-Bi-based rare-earth-free permanent magnets. The magnetic SANS cross section is dominated by long-wavelength transversal magnetization fluctuations and has been