ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova Remnants in M33: X-ray Properties as Observed by XMM-Newton

77   0   0.0 ( 0 )
 نشر من قبل Kristen Garofali
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a study of the X-ray properties of the supernova remnant (SNR) population in M33 with XMM-Newton, comprising deep observations of 8 fields in M33 covering all of the area within the D$_{25}$ contours, and with a typical luminosity of 7.1$times$10$^{34}$ erg s$^{-1}$ (0.2-2.0 keV) . Here we report our work to characterize the X-ray properties of the previously identified SNRs in M33, as well as our search for new X-ray detected SNRs. With our deep observations and large field of view we have detected 105 SNRs at the 3$sigma$ level, of which 54 SNRs are newly detected in X-rays, and three are newly discovered SNRs. Combining XMM-Newton data with deep Chandra survey data allows detailed spectral fitting of 15 SNRs, for which we have measured temperatures, ionization timescales, and individual abundances. This large sample of SNRs allows us to construct an X-ray luminosity function, and compare its shape to luminosity functions from host galaxies of differing metallicities and star formation rates to look for environmental effects on SNR properties. We conclude that while metallicity may play a role in SNR population characteristics, differing star formation histories on short timescales, and small-scale environmental effects appear to cause more significant differences between X-ray luminosity distributions. In addition, we analyze the X-ray detectability of SNRs, and find that in M33 SNRs with higher [SII]/H$alpha$ ratios, as well as those with smaller galactocentric distances, are more detectable in X-rays.

قيم البحث

اقرأ أيضاً

Candidate supernova remnants G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, ~3 in diameter, whi ch we tentatively interpret as a pulsar-wind nebula (PWN) of the middle-aged radio pulsar B1830-08. Our analysis suggests an association between PSR B1830-08 and the surrounding diffuse radio emission. If the radio emission is due to the SNR, then the pulsar must be significantly younger than its characteristic age. Alternatively, the radio emission may come from a relic PWN. In the field of G25.5+0.0, which contains the extended TeV source HESS J1837-069, we detected the recently discovered young high-energy pulsar J1838-0655 embedded in a PWN with extent of 1.3. We also detected another PWN candidate (AX J1837.3-0652) with an extent of 2 and unabsorbed luminosity L_(2-10 keV) ~ 4 x 10^33 erg/s at d=7 kpc. The third X-ray source, located within the extent of the HESS J1837-069, has a peculiar extended radio counterpart, possibly a radio galaxy with a double nucleus or a microquasar. We did not find any evidence of the SNR emission in the G25.5+0.0 field. We provide detailed multiwavelength analysis and identifications of other field sources and discuss robustness of the G25.5+0.0 and G23.5+0.1 classifications as SNRs. (abstract abridged)
The XMM-Newton observatory shows evidence with an $11 sigma$ confidence level for seasonal variation of the X-ray background in the near-Earth environment in the 2-6 keV energy range (Fraser et al. 2014). The interpretation of the seasonal variation given in Fraser et al. 2014 was based on the assumption that solar axions convert to X-rays in the Earths magnetic field. There are many problems with this interpretation, since the axion-photon conversion must preserve the directionality of the incoming solar axion. At the same time, this direction is avoided by the observations because the XMM-Newtons operations exclude pointing at the Sun and at the Earth. The observed seasonal variation suggests that the signal could have a dark matter origin, since it is very difficult to explain with conventional astrophysical sources. We propose an alternative explanation which involves the so-called Axion Quark Nugget (AQN) dark matter model. In our proposal, dark matter is made of AQNs, which can cross the Earth and emit high energy photons at their exit. We show that the emitted intensity and spectrum is consistent with Fraser et al. 2014, and that our calculation is not sensitive to the specific details of the model. We also find that our proposal predicts a large seasonal variation, on the level of 20-25%, much larger than conventional dark matter models (1-10%). Since the AQN emission spectrum extends up to $sim$100 keV, well beyond the keV sensitivity of XMM-Newton, we predict the AQN contribution to the hard X-ray and $gamma$-ray backgrounds in the Earths environment. The Gamma-Ray Burst Monitor instrument (GBM), aboard the Fermi telescope, is sensitive to the 8 keV-40 MeV energy band. We suggest that the multi-year archival data from the GBM could be used to search for a seasonal variation in the near-Earth environment up to 100 keV as a future test of the AQN framework.
429 - B. Gendre 2005
We present a catalog of XMM-Newton and Chandra observations of gamma-ray burst (GRB) afterglows, reduced in a common way using the most up-to-date calibration files and software. We focus on the continuum properties of the afterglows. We derive the s pectral and temporal decay indices for 16 bursts. We place constraints on the burst environment and geometry. A comparison of the fast XMM-Newton follow-up and the late Chandra observations shows a significant difference in those parameters, likely produced by a transition from jet expansion taking place between two and ten days after the burst. We do not observe a significant shrinking of the luminosity distribution when we correct for beaming; more burst observations are needed to confirm this result. We also compare our results with those obtained by BeppoSAX and SWIFT; there is no strong discrepancy between the afterglow fluxes observed with these satellites when we carefully take into account the different median observation time of each observatory.
102 - Manami Sasaki 2012
We present the analysis of supernova remnants (SNRs) and candidates in M31 identified in the XMM-Newton large programme survey of M31. SNRs are among the bright X-ray sources in a galaxy. They are good indicators of recent star formation activities o f a galaxy and of the interstellar environment in which they evolve. By combining the X-ray data of sources in M31 with optical data as well as with optical and radio catalogues, we aim to compile a complete, revised list of SNRs emitting X-rays in M31 detected with XMM-Newton, study their luminosity and spatial distribution, and understand the X-ray spectrum of the brightest SNRs. We analysed the X-ray spectra of the twelve brightest SNRs and candidates using XMM-Newton data. The four brightest sources allowed us to perform a more detailed spectral analysis and the comparison of different models to describe their spectrum. For all M31 large programme sources we searched for optical counterparts on the Ha, [Sii], and [Oiii] images of the Local Group Galaxy Survey. We confirm 21 X-ray sources as counterparts of known SNRs. In addition, we identify five new X-ray sources as X-ray and optically emitting SNRs. Seventeen sources are no longer considered as SNR candidates. We have thus created a list of 26 X-ray SNRs and 20 candidates in M31 based on their X-ray, optical, and radio emission, which is the most recent complete list of X-ray SNRs in M31. The brightest SNRs have X-ray luminosities of up to 8 x 10^36 erg/s in the 0.35 - 2.0 keV band.
We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detect ing outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا