ﻻ يوجد ملخص باللغة العربية
We present the analysis of supernova remnants (SNRs) and candidates in M31 identified in the XMM-Newton large programme survey of M31. SNRs are among the bright X-ray sources in a galaxy. They are good indicators of recent star formation activities of a galaxy and of the interstellar environment in which they evolve. By combining the X-ray data of sources in M31 with optical data as well as with optical and radio catalogues, we aim to compile a complete, revised list of SNRs emitting X-rays in M31 detected with XMM-Newton, study their luminosity and spatial distribution, and understand the X-ray spectrum of the brightest SNRs. We analysed the X-ray spectra of the twelve brightest SNRs and candidates using XMM-Newton data. The four brightest sources allowed us to perform a more detailed spectral analysis and the comparison of different models to describe their spectrum. For all M31 large programme sources we searched for optical counterparts on the Ha, [Sii], and [Oiii] images of the Local Group Galaxy Survey. We confirm 21 X-ray sources as counterparts of known SNRs. In addition, we identify five new X-ray sources as X-ray and optically emitting SNRs. Seventeen sources are no longer considered as SNR candidates. We have thus created a list of 26 X-ray SNRs and 20 candidates in M31 based on their X-ray, optical, and radio emission, which is the most recent complete list of X-ray SNRs in M31. The brightest SNRs have X-ray luminosities of up to 8 x 10^36 erg/s in the 0.35 - 2.0 keV band.
Candidate supernova remnants G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, ~3 in diameter, whi
We have carried out a study of the X-ray properties of the supernova remnant (SNR) population in M33 with XMM-Newton, comprising deep observations of 8 fields in M33 covering all of the area within the D$_{25}$ contours, and with a typical luminosity
We present an XMM-Newton observation of the highly polarized low-surface brightness supernova remnant G107.5-1.5, discovered with the Canadian Galactic Plane Survey (CGPS). We do not detect diffuse X-ray emission from the SNR and set an upper limit o
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the d
Sky surveys produce enormous quantities of data on extensive regions of the sky. The easiest way to access this information is through catalogues of standardised data products. {em XMM-Newton} has been surveying the sky in the X-ray, ultra-violet, an