ﻻ يوجد ملخص باللغة العربية
Coherence and entanglement are fundamental properties of quantum systems, promising to power the near future quantum computers, sensors and simulators. Yet, their experimental detection is challenging, usually requiring full reconstruction of the system state. We show that one can extract quantitative bounds to the relative entropy of coherence and the coherent information, coherence and entanglement quantifiers respectively, by a limited number of purity measurements. The scheme is readily implementable with current technology to verify quantum computations in large scale registers, without carrying out expensive state tomography.
In this work we investigate how to quantify the coherence of quantum measurements. First, we establish a resource theoretical framework to address the coherence of measurement and show that any statistical distance can be adopted to define a coherenc
Quantum coherence, like entanglement, is a fundamental resource in quantum information. In recent years, remarkable progress has been made in formulating resource theory of coherence from a broader perspective. The notions of block-coherence and POVM
Entanglement is the key feature of many-body quantum systems, and the development of new tools to probe it in the laboratory is an outstanding challenge. Measuring the entropy of different partitions of a quantum system provides a way to probe its en
Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed
The detection and quantification of quantum coherence play significant roles in quantum information processing. We present an efficient way of tomographic witnessing for both theoretical and experimental detection of coherence. We prove that a cohere