ترغب بنشر مسار تعليمي؟ اضغط هنا

Tomographic Witnessing and Holographic Quantifying of Coherence

73   0   0.0 ( 0 )
 نشر من قبل Bang-Hai Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection and quantification of quantum coherence play significant roles in quantum information processing. We present an efficient way of tomographic witnessing for both theoretical and experimental detection of coherence. We prove that a coherence witness is optimal if and only if all of its diagonal elements are zero. Naturally, we obtain a bona fide homographic measure of coherence given by the sum of the absolute values of the real and the imaginary parts of the non-diagonal entries of a density matrix, together with its interesting relations with other coherence measures like $l_1$ norm coherence and robust of coherence.



قيم البحث

اقرأ أيضاً

Quantum coherence, like entanglement, is a fundamental resource in quantum information. In recent years, remarkable progress has been made in formulating resource theory of coherence from a broader perspective. The notions of block-coherence and POVM -based coherence have been established. Certain challenges, however, remain to be addressed. It is difficult to define incoherent operations directly, without requiring incoherent states, which proves a major obstacle in establishing the resource theory of dynamical coherence. In this paper, we overcome this limitation by introducing an alternate definition of incoherent operations, induced via coherence measures, and quantify dynamical coherence based on this definition. Finally, we apply our proposed definition to quantify POVM-based dynamical coherence.
In this work we investigate how to quantify the coherence of quantum measurements. First, we establish a resource theoretical framework to address the coherence of measurement and show that any statistical distance can be adopted to define a coherenc e monotone of measurement. For instance, the relative entropy fulfills all the required properties as a proper monotone. We specifically introduce a coherence monotone of measurement in terms of off-diagonal elements of Positive-Operator-Valued Measure (POVM) components. This quantification provides a lower bound on the robustness of measurement-coherence that has an operational meaning as the maximal advantage over all incoherent measurements in state discrimination tasks. Finally, we propose an experimental scheme to assess our quantification of measurement-coherence and demonstrate it by performing an experiment using a single qubit on IBM Q processor.
82 - Deng-hui Yu , Li-qiang Zhang , 2020
Quantifying quantum coherence is a key task in the resource theory of coherence. Here we establish a good coherence monotone in terms of a state conversion process, which automatically endows the coherence monotone with an operational meaning. We sho w that any state can be produced from some input pure states via the corresponding incoherent channels. It is especially found that the coherence of a given state can be well characterized by the least coherence of the input pure states, so a coherence monotone is established by only effectively quantifying the input pure states. In particular, we show that our proposed coherence monotone is the supremum of all the coherence monotones that give the same coherence for any given pure state. Considering the convexity, we prove that our proposed coherence measure is a subset of the coherence measure based on the convex roof construction. As an application, we give a concrete expression of our coherence measure by employing the geometric coherence of a pure state. We also give a thorough analysis on the states of qubit and finally obtain series of analytic coherence measures.
Coherence and entanglement are fundamental properties of quantum systems, promising to power the near future quantum computers, sensors and simulators. Yet, their experimental detection is challenging, usually requiring full reconstruction of the sys tem state. We show that one can extract quantitative bounds to the relative entropy of coherence and the coherent information, coherence and entanglement quantifiers respectively, by a limited number of purity measurements. The scheme is readily implementable with current technology to verify quantum computations in large scale registers, without carrying out expensive state tomography.
Quantum addition channels have been recently introduced in the context of deriving entropic power inequalities for finite dimensional quantum systems. We prove a reverse entropy power equality which can be used to analytically prove an inequality con jectured recently for arbitrary dimension and arbitrary addition weight. We show that the relative entropic difference between the output of such a quantum additon channel and the corresponding classical mixture quantitatively captures the amount of coherence present in a quantum system. This new coherence measure admits an upper bound in terms of the relative entropy of coherence and is utilized to formulate a state-dependent uncertainty relation for two observables. Our results may provide deep insights to the origin of quantum coherence for mixed states that truly come from the discrepancy between quantum addition and the classical mixture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا