ﻻ يوجد ملخص باللغة العربية
Determining semantic textual similarity is a core research subject in natural language processing. Since vector-based models for sentence representation often use shallow information, capturing accurate semantics is difficult. By contrast, logical semantic representations capture deeper levels of sentence semantics, but their symbolic nature does not offer graded notions of textual similarity. We propose a method for determining semantic textual similarity by combining shallow features with features extracted from natural deduction proofs of bidirectional entailment relations between sentence pairs. For the natural deduction proofs, we use ccg2lambda, a higher-order automatic inference system, which converts Combinatory Categorial Grammar (CCG) derivation trees into semantic representations and conducts natural deduction proofs. Experiments show that our system was able to outperform other logic-based systems and that features derived from the proofs are effective for learning textual similarity.
How to identify, extract, and use phrasal knowledge is a crucial problem for the task of Recognizing Textual Entailment (RTE). To solve this problem, we propose a method for detecting paraphrases via natural deduction proofs of semantic relations bet
We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational input-response pairs. The resulting sentence embeddings perform w
We address the task of unsupervised Semantic Textual Similarity (STS) by ensembling diverse pre-trained sentence encoders into sentence meta-embeddings. We apply, extend and evaluate different meta-embedding methods from the word embedding literature
User acceptance of artificial intelligence agents might depend on their ability to explain their reasoning, which requires adding an interpretability layer that fa- cilitates users to understand their behavior. This paper focuses on adding an in- ter
In this paper, we present a new corpus of entailment problems. This corpus combines the following characteristics: 1. it is precise (does not leave out implicit hypotheses) 2. it is based on real-world texts (i.e. most of the premises were written fo