ترغب بنشر مسار تعليمي؟ اضغط هنا

Sentence Meta-Embeddings for Unsupervised Semantic Textual Similarity

126   0   0.0 ( 0 )
 نشر من قبل Nina Poerner
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the task of unsupervised Semantic Textual Similarity (STS) by ensembling diverse pre-trained sentence encoders into sentence meta-embeddings. We apply, extend and evaluate different meta-embedding methods from the word embedding literature at the sentence level, including dimensionality reduction (Yin and Schutze, 2016), generalized Canonical Correlation Analysis (Rastogi et al., 2015) and cross-view auto-encoders (Bollegala and Bao, 2018). Our sentence meta-embeddings set a new unsupervised State of The Art (SoTA) on the STS Benchmark and on the STS12-STS16 datasets, with gains of between 3.7% and 6.4% Pearsons r over single-source systems.



قيم البحث

اقرأ أيضاً

We present a novel approach to learn representations for sentence-level semantic similarity using conversational data. Our method trains an unsupervised model to predict conversational input-response pairs. The resulting sentence embeddings perform w ell on the semantic textual similarity (STS) benchmark and SemEval 2017s Community Question Answering (CQA) question similarity subtask. Performance is further improved by introducing multitask training combining the conversational input-response prediction task and a natural language inference task. Extensive experiments show the proposed model achieves the best performance among all neural models on the STS benchmark and is competitive with the state-of-the-art feature engineered and mixed systems in both tasks.
This paper introduces a sentence to vector encoding framework suitable for advanced natural language processing. Our latent representation is shown to encode sentences with common semantic information with similar vector representations. The vector r epresentation is extracted from an encoder-decoder model which is trained on sentence paraphrase pairs. We demonstrate the application of the sentence representations for two different tasks -- sentence paraphrasing and paragraph summarization, making it attractive for commonly used recurrent frameworks that process text. Experimental results help gain insight how vector representations are suitable for advanced language embedding.
Determining semantic textual similarity is a core research subject in natural language processing. Since vector-based models for sentence representation often use shallow information, capturing accurate semantics is difficult. By contrast, logical se mantic representations capture deeper levels of sentence semantics, but their symbolic nature does not offer graded notions of textual similarity. We propose a method for determining semantic textual similarity by combining shallow features with features extracted from natural deduction proofs of bidirectional entailment relations between sentence pairs. For the natural deduction proofs, we use ccg2lambda, a higher-order automatic inference system, which converts Combinatory Categorial Grammar (CCG) derivation trees into semantic representations and conducts natural deduction proofs. Experiments show that our system was able to outperform other logic-based systems and that features derived from the proofs are effective for learning textual similarity.
User acceptance of artificial intelligence agents might depend on their ability to explain their reasoning, which requires adding an interpretability layer that fa- cilitates users to understand their behavior. This paper focuses on adding an in- ter pretable layer on top of Semantic Textual Similarity (STS), which measures the degree of semantic equivalence between two sentences. The interpretability layer is formalized as the alignment between pairs of segments across the two sentences, where the relation between the segments is labeled with a relation type and a similarity score. We present a publicly available dataset of sentence pairs annotated following the formalization. We then develop a system trained on this dataset which, given a sentence pair, explains what is similar and different, in the form of graded and typed segment alignments. When evaluated on the dataset, the system performs better than an informed baseline, showing that the dataset and task are well-defined and feasible. Most importantly, two user studies show how the system output can be used to automatically produce explanations in natural language. Users performed better when having access to the explanations, pro- viding preliminary evidence that our dataset and method to automatically produce explanations is useful in real applications.
Semantic Similarity between two sentences can be defined as a way to determine how related or unrelated two sentences are. The task of Semantic Similarity in terms of distributed representations can be thought to be generating sentence embeddings (de nse vectors) which take both context and meaning of sentence in account. Such embeddings can be produced by multiple methods, in this paper we try to evaluate LSTM auto encoders for generating these embeddings. Unsupervised algorithms (auto encoders to be specific) just try to recreate their inputs, but they can be forced to learn order (and some inherent meaning to some extent) by creating proper bottlenecks. We try to evaluate how properly can algorithms trained just on plain English Sentences learn to figure out Semantic Similarity, without giving them any sense of what meaning of a sentence is.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا