ﻻ يوجد ملخص باللغة العربية
Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and database (retrieval) points. The training of these symmetric deep supervised hashing methods is typically time-consuming, which makes them hard to effectively utilize the supervised information for cases with large-scale database. In this paper, we propose a novel deep supervised hashing method, called asymmetric deep supervised hashing (ADSH), for large-scale nearest neighbor search. ADSH treats the query points and database points in an asymmetric way. More specifically, ADSH learns a deep hash function only for query points, while the hash codes for database points are directly learned. The training of ADSH is much more efficient than that of traditional symmetric deep supervised hashing methods. Experiments show that ADSH can achieve state-of-the-art performance in real applications.
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and dee
Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for
In real-world applications, it is often expensive and time-consuming to obtain labeled examples. In such cases, knowledge transfer from related domains, where labels are abundant, could greatly reduce the need for extensive labeling efforts. In this
In high-dimensional data space, semi-supervised feature learning based on Euclidean distance shows instability under a broad set of conditions. Furthermore, the scarcity and high cost of labels prompt us to explore new semi-supervised learning method
Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across m