ﻻ يوجد ملخص باللغة العربية
This paper examines the valuation of American capped call options with two-level caps. The structure of the immediate exercise region is significantly more complex than in the classical case with constant cap. When the cap grows over time, making extensive use of probabilistic arguments and local time, we show that the exercise region can be the union of two disconnected set. Alternatively, it can consist of two sets connected by a line. The problem then reduces to the characterization of the upper boundary of the first set, which is shown to satisfy a recursive integral equation. When the cap decreases over time, the boundary of the exercise region has piecewise constant segments alternating with non-increasing segments. General representation formulas for the option price, involving the exercise boundaries and the local time of the underlying price process, are derived. An efficient algorithm is developed and numerical results are provided.
Continuous-time random walks are a well suited tool for the description of market behaviour at the smallest scale: the tick-to-tick evolution. We will apply this kind of market model to the valuation of perpetual American options: derivatives with no
A make-your-mind-up option is an American derivative with delivery lags. We show that its put option can be decomposed as a European put and a new type of American-style derivative. The latter is an option for which the investor receives the Greek Th
We call a given American option representable if there exists a European claim which dominates the American payoff at any time and such that the values of the two options coincide in the continuation region of the American option. This concept has in
The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) =
This paper presents the Runge-Kutta-Legendre finite difference scheme, allowing for an additional shift in its polynomial representation. A short presentation of the stability region, comparatively to the Runge-Kutta-Chebyshev scheme follows. We then