ﻻ يوجد ملخص باللغة العربية
Extraterrestrial gamma-ray astronomy is now a source of new knowledge in the fields of astrophysics, cosmic-ray physics, and the nature of dark matter. The next absolutely necessary step in the development of extraterrestrial high-energy gamma-ray astronomy is the improvement of the physical and technical characteristics of gamma-ray telescopes, especially the angular and energy resolutions. Such a new generation telescope will be GAMMA-400. GAMMA-400, currently developing gamma-ray telescope, together with X-ray telescope will precisely and detailed observe in the energy range of ~20 MeV to ~1000 GeV and 3-30 keV the Galactic plane, especially, Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. The GAMMA- 400 will operate in the highly elliptic orbit continuously for a long time with the unprecedented angular (~0.01{deg} at E{gamma} = 100 GeV) and energy (~1% at E{gamma} = 100 GeV) resolutions better than the Fermi-LAT, as well as ground gamma-ray telescopes, by a factor of 5-10. GAMMA-400 will permit to resolve gamma rays from annihilation or decay of dark matter particles, identify many discrete sources (many of which are variable), to clarify the structure of extended sources, to specify the data on the diffuse emission.
The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Gal
GAMMA-400 is a new space mission, designed as a dual experiment, capable to study both high energy gamma rays (from $sim$100 MeV to few TeV) and cosmic rays (electrons up to 20 TeV and nuclei up to $sim$10$^{15}$ eV). The full simulation framework of
The future space-based GAMMA-400 gamma-ray telescope will operate onboard the Russian astrophysical observatory in a highly elliptic orbit during 7 years to observe Galactic plane, Galactic Center, Fermi Bubbles, Crab, Vela, Cygnus X, Geminga, Sun, a
The main goal for the GAMMA-400 gamma-ray telescope mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. Measurements will also concern the following scientific goals: detailed study of t
GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in o