ﻻ يوجد ملخص باللغة العربية
The main goal for the GAMMA-400 gamma-ray telescope mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. Measurements will also concern the following scientific goals: detailed study of the Galactic center region, investigation of point and extended gamma-ray sources, studies of the energy spectra of Galactic and extragalactic diffuse emissions. To perform these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics for energy range from ~20 MeV to ~1000 GeV in comparison with previous and current space and ground-based experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolutions for gamma-rays above 10 GeV. The gamma-ray telescope angular and energy resolutions for the main aperture at 100-GeV gamma rays are ~0.01 deg and ~1%, respectively. The special goal is to improve physical characteristics in the low- energy range from ~20 MeV to 100 MeV. Minimizing the amount of dead matter in the telescope aperture allows us to obtain the angular and energy resolutions better in this range than in current space missions. The gamma-ray telescope angular resolution at 50-MeV gamma rays is better than 5 deg and energy resolution is ~10%. We report the method providing these results.
GAMMA-400 is a new space mission, designed as a dual experiment, capable to study both high energy gamma rays (from $sim$100 MeV to few TeV) and cosmic rays (electrons up to 20 TeV and nuclei up to $sim$10$^{15}$ eV). The full simulation framework of
Extraterrestrial gamma-ray astronomy is now a source of new knowledge in the fields of astrophysics, cosmic-ray physics, and the nature of dark matter. The next absolutely necessary step in the development of extraterrestrial high-energy gamma-ray as
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to
The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Gal
GAMMA-400 is a new space mission which will be installed on board the Russian space platform Navigator. It is scheduled to be launched at the beginning of the next decade. GAMMA-400 is designed to study simultaneously gamma rays (up to 3 TeV) and cos