ﻻ يوجد ملخص باللغة العربية
Mg/Si and Fe/Si ratios are important parameters that control the composition of rocky planets. In this work we applied non-LTE correction to the Mg and Si abundances of stars with and without planets to confirm/infirm our previous findings that [Mg/Si] atmospheric abundance is systematically higher for Super-Earth/Neptune-mass planet hosts than stars without planets. Our results show that the small differences of stellar parameters observed in these two groups of stars are not responsible for the already reported difference in the [Mg/Si] ratio. Thus, the high [Mg/Si] ratio of Neptunian hosts is probably related to the formation efficiency of these planets in such environments.
It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results th
The growing database of exoplanets have shown us the statistical characteristics of various exoplanet populations, providing insight towards their origins. Observational evidence suggests that the process by which gas giants are conceived in the stel
Close binaries suppress the formation of circumstellar (S-type) planets and therefore significantly bias the inferred planet occurrence rates and statistical trends. After compiling various radial velocity and high-resolution imaging surveys, we dete
Measured disk masses seem to be too low to form the observed population of planetary systems. In this context, we develop a population synthesis code in the pebble accretion scenario, to analyse the disk mass dependence on planet formation around low
Solar photospheric abundances of refractory elements mirror the Earths to within ~10 mol% when normalized to the dominant terrestrial planet-forming elements Mg, Si and Fe. This allows for the adoption of Solar composition as an order-of-magnitude pr