ترغب بنشر مسار تعليمي؟ اضغط هنا

Mg/Si mineralogical ratio of low-mass planet hosts. Correction for the NLTE effects

104   0   0.0 ( 0 )
 نشر من قبل Vardan Adibekyan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mg/Si and Fe/Si ratios are important parameters that control the composition of rocky planets. In this work we applied non-LTE correction to the Mg and Si abundances of stars with and without planets to confirm/infirm our previous findings that [Mg/Si] atmospheric abundance is systematically higher for Super-Earth/Neptune-mass planet hosts than stars without planets. Our results show that the small differences of stellar parameters observed in these two groups of stars are not responsible for the already reported difference in the [Mg/Si] ratio. Thus, the high [Mg/Si] ratio of Neptunian hosts is probably related to the formation efficiency of these planets in such environments.

قيم البحث

اقرأ أيضاً

It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results th at lead to discrepancies in the analysis of planet hosts. To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity - giant planet connection for evolved stars. A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets ($log g < 3.0$,dex) with respect to red giants without planets.
The growing database of exoplanets have shown us the statistical characteristics of various exoplanet populations, providing insight towards their origins. Observational evidence suggests that the process by which gas giants are conceived in the stel lar disk may be disparate from that of smaller planets. Using NASAs Exoplanet Archive, we analyzed a correlation between the planet mass and stellar metallicity of low-mass exoplanets (MP < 0.13 MJ) orbiting spectral class G, K, and M stars. The correlation suggests an exponential law relationship between the two that is not fully explained by observation biases alone.
Close binaries suppress the formation of circumstellar (S-type) planets and therefore significantly bias the inferred planet occurrence rates and statistical trends. After compiling various radial velocity and high-resolution imaging surveys, we dete rmine that binaries with a < 1 au fully suppress S-type planets, binaries with a = 10 au host close planets at 15% the occurrence rate of single stars, and wide binaries with a > 200 au have a negligible effect on close planet formation. We show that F = 43% +/- 7% of solar-type primaries do not host close planets due to suppression by close stellar companions. By removing spectroscopic binaries from their samples, radial velocity surveys for giant planets boost their detection rates by a factor of 1/(1-F) = 1.8 +/- 0.2 compared to transiting surveys. This selection bias fully accounts for the discrepancy in hot Jupiter occurrence rates inferred from these two detection methods. Correcting for both planet suppression by close binaries and transit dilution by wide binaries, the occurrence rate of small planets orbiting single G-dwarfs is 2.1 +/- 0.3 times larger than the rate inferred from all G-dwarfs in the Kepler survey. Additionally, about half (but not all) of the observed increase in small, short-period planets toward low-mass hosts can be explained by the corresponding decrease in the binary fraction. Finally, we demonstrate that the apparent enhancement of wide stellar companions to hot Jupiter hosts is due to multiple selection effects. Very close binaries, brown dwarf companions, and massive planets with M_2 > 7 M_J within a < 0.2 au preferentially have metal-poor hosts and wide tertiary companions, but genuine hot Jupiters with M_p = 0.2-4 M_J that formed via core accretion instead favor metal-rich hosts and do not exhibit a statistically significant excess of wide stellar companions.
Measured disk masses seem to be too low to form the observed population of planetary systems. In this context, we develop a population synthesis code in the pebble accretion scenario, to analyse the disk mass dependence on planet formation around low mass stars. We base our model on the analytical sequential model presented in Ormel et al. 2017 and analyse the populations resulting from varying initial disk mass distributions. Starting out with seeds the mass of Ceres near the ice-line formed by streaming instability, we grow the planets using the Pebble Accretion process and migrate them inwards using Type-I migration. The next planets are formed sequentially after the previous planet crosses the ice-line. We explore different initial distributions of disk masses to show the dependence of this parameter with the final planetary population. Our results show that compact close-in resonant systems can be pretty common around M-dwarfs between $0.09-0.2$ $M_{odot}$ only when the disks considered are more massive than what is being observed by sub-mm disk surveys. The minimum disk mass to form a Mars-like planet is found to be about $2 times 10^{-3}$ $M_{odot}$. Small variation in the disk mass distribution also manifest in the simulated planet distribution. The paradox of disk masses might be caused by an underestimation of the disk masses in observations, by a rapid depletion of mass in disks by planets growing within a million years or by deficiencies in our current planet formation picture.
Solar photospheric abundances of refractory elements mirror the Earths to within ~10 mol% when normalized to the dominant terrestrial planet-forming elements Mg, Si and Fe. This allows for the adoption of Solar composition as an order-of-magnitude pr oxy for Earths. It is not known, however, the degree to which this mirroring of stellar and terrestrial planet abundances holds true for other star-planet systems without determination of the composition of initial planetesimals via condensation sequence calculations and post condensation processes. We present the open-source Arbitrary Composition Condensation Sequence calculator (ArCCoS) to assess how the elemental composition of a parent star affects that of the planet-building material, including the extent of oxidation within the planetesimals. We demonstrate the utility of ArCCoS by showing how variations in the abundance of the stellar refractory elements Mg and Si affect the condensation of oxygen, a controlling factor in the relative proportions of planetary core and silicate mantle material. This, thereby, removes significant degeneracy in the interpretation of the structures of exoplanets as well as providing observational tests for the validity of this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا