ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Mg/Si on Exoplanetary Refractory Oxygen Budget

91   0   0.0 ( 0 )
 نشر من قبل Cayman Unterborn
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar photospheric abundances of refractory elements mirror the Earths to within ~10 mol% when normalized to the dominant terrestrial planet-forming elements Mg, Si and Fe. This allows for the adoption of Solar composition as an order-of-magnitude proxy for Earths. It is not known, however, the degree to which this mirroring of stellar and terrestrial planet abundances holds true for other star-planet systems without determination of the composition of initial planetesimals via condensation sequence calculations and post condensation processes. We present the open-source Arbitrary Composition Condensation Sequence calculator (ArCCoS) to assess how the elemental composition of a parent star affects that of the planet-building material, including the extent of oxidation within the planetesimals. We demonstrate the utility of ArCCoS by showing how variations in the abundance of the stellar refractory elements Mg and Si affect the condensation of oxygen, a controlling factor in the relative proportions of planetary core and silicate mantle material. This, thereby, removes significant degeneracy in the interpretation of the structures of exoplanets as well as providing observational tests for the validity of this model.

قيم البحث

اقرأ أيضاً

Mg/Si and Fe/Si ratios are important parameters that control the composition of rocky planets. In this work we applied non-LTE correction to the Mg and Si abundances of stars with and without planets to confirm/infirm our previous findings that [Mg/S i] atmospheric abundance is systematically higher for Super-Earth/Neptune-mass planet hosts than stars without planets. Our results show that the small differences of stellar parameters observed in these two groups of stars are not responsible for the already reported difference in the [Mg/Si] ratio. Thus, the high [Mg/Si] ratio of Neptunian hosts is probably related to the formation efficiency of these planets in such environments.
The collision-induced fundamental vibration-rotation band at 6.4 um is the most significant absorption feature from O2 in the infrared (Timofeyev and Tonkov, 1978; Rinslandet al., 1982, 1989), yet it has not been previously incorporated into exoplane t spectral analyses for several reasons. Either CIAs were not included or incomplete/obsolete CIA databases were used. Also, the current version of HITRAN does not include CIAs at 6.4 um with other collision partners (O2-X). We include O2-X CIA features in our transmission spectroscopy simulations by parameterizing the 6.4 um O2-N2 CIA based on Rinsland et al.(1989) and the O2-CO2 CIA based on Baranov et al. (2004). Here we report that the O2-X CIA may be the most detectable O2 feature for transit observations. For a potentialTRAPPIST-1e analogue system within 5 pc of the Sun, it could be the only O2 detectable signature with JWST (using MIRI LRS) for a modern Earth-like cloudy atmosphere with biological quantities of O2. Also, we show that the 6.4 um O2-X CIA would be prominent for O2-rich desiccated atmospheres (Luger and Barnes, 2015) and could be detectable with JWST in just a few transits. For systems beyond 5 pc, this feature could therefore be a powerful discriminator of uninhabited planets with non-biological false positive O2 in their atmospheres - as they would only be detectable at those higher O2 pressures.
We consider a stochastic process undergoing resetting after which a random refractory period is imposed. In this period the process is quiescent and remains at the resetting position. Using a first-renewal approach, we compute exactly the stationary position distribution and analyse the emergence of a delta peak at the resetting position. In the case of a power-law distribution for the refractory period we find slow relaxation. We generalise our results to the case when the resetting period and the refractory period are correlated, by computing the Laplace transform of the survival probability of the process and the mean first passage time, i.e., the mean time to completion of a task. We also compute exactly the joint distribution of the active and absorption time to a fixed target.
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features i n the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely, the optical slope, the uniformity of this slope, and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes, and scale heights. Firstly, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na$_2$S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g., MnS, ZnS, TiO$_2$, and Fe$_2$O$_3$ have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO$_2$, Fe$_2$O$_3$, Mg$_2$SiO$_4$, and MgSiO$_3$ bearing strong infrared features observable with the James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
The Al/Si and Mg/Si ratios in non-carbonaceous chondrites are lower than the solar (i.e., CI-chondritic) values, in sharp contrast to the non-CI carbonaceous meteorites and the Earth, which are enriched in refractory elements and have Mg/Si ratios th at are solar or larger. We show that the formation of a first generation of planetesimals during the condensation of refractory elements implies the subsequent formation of residual condensates with strongly sub-solar Al/Si and Mg/Si ratios. The mixing of residual condensates with different amounts of material with solar refractory/Si element ratios explains the Al/Si and Mg/Si values of non-carbonaceous chondrites. To match quantitatively the observed ratios, we find that the first-planetesimals should have accreted when the disk temperature was ~1,330-1,400 K depending on pressure and assuming a solar C/O ratio of the disk. We discuss how this model relates to our current understanding of disk evolution, grain dynamics, and planetesimal formation. We also extend the discussion to moderately volatile elements (e.g., Na), explaining how it may be possible that the depletion of these elements in non-carbonaceous chondrites is correlated with the depletion of refractory elements (e.g., Al). Extending the analysis to Cr, we find evidence for a higher than solar C/O ratio in the protosolar disks gas when/where condensation from a fractionated gas occurred. Finally, we discuss the possibility that the supra-solar Al/Si and Mg/Si ratios of the Earth are due to the accretion of ~40% of the mass of our planet from the first-generation of refractory-rich planetesimals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا