ترغب بنشر مسار تعليمي؟ اضغط هنا

The population point of view on the evolution of TeV pulsar wind nebulae

69   0   0.0 ( 0 )
 نشر من قبل Stefan Klepser
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the nature and evolution of TeV pulsar wind nebulae, we examine the firmly identified PWNe in the H.E.S.S. Galactic Plane Survey, along with the few other known detections from the literature, as well as the upper limits extracted from the H.E.S.S survey. These data exhibit a correlation of TeV surface brightness with pulsar spin-down power. It appears to be caused by both an increase of TeV extension and a decrease of TeV luminosity with decreasing spin-down power. We also find that the offsets of pulsars with ages around 10 kyr with respect to the wind nebula centres are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. These and other results will be presented and put to context with a basic modelling of TeV pulsar wind nebula evolution.

قيم البحث

اقرأ أيضاً

The nine-year H.E.S.S. Galactic Plane Survey (HGPS) yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of Te V pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power $dot{E}$. This seems to be caused both by an increase of extension with decreasing $dot{E}$, and hence with time, compatible with a power law $R_mathrm{PWN}(dot{E}) sim dot{E}^{-0.65 pm 0.20}$, and by a mild decrease of TeV gamma-ray luminosity with decreasing $dot{E}$, compatible with $L_{1-10,mathrm{TeV}} sim dot{E}^{0.59 pm 0.21}$. We also find that the offsets of pulsars with respect to the wind nebula centres with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency $L_{1-10,mathrm{TeV}}/dot{E}$. In addition to 14 HGPS sources considered as firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that form likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.
Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV gamma-ray emitters. Since launch, the Fermi Large Area Telescope (LAT)identified five high-energy (100MeV <E< 100 GeV) gamma-ray sources as PWNe, and detected a large number of PWNe candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV gamma-ray unidentifiedsources (UNIDs) are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58TeV PWNe and UNIDs within 5deg of the Galactic Plane to establish new constraints on PWNe properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their gamma-rayfluxes for energies above 10 GeV. The spectral energy distributions (SED) andupper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e. between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWNe candidates are described in detail and compared with existing models. A population study of GeV PWNe candidates as a function of the pulsar/PWN system characteristics is presented.
97 - Aya Bamba 2010
During the search for counterparts of very-high-energy gamma-ray sources, we serendipitously discovered large, extended, low surface brightness emission from PWNe around pulsars with the ages up to ~100 kyrs, a discovery made possible by the low and stable background of the Suzaku X-ray satellite. A systematic study of a sample of 8 of these PWNe, together with Chandra datasets, has revealed us that the nebulae keep expanding up to for ~100 kyrs, although time scale of the synchrotron X-ray emission is only ~60 yr for typical magnetic fields of 100 microG. Our result suggests that the accelerated electrons up to ~80 TeV can escape from the PWNe without losing most energies. Moreover, in order to explain the observed correlation between the X-ray size and the pulsar spindwon age, the magnetic field strength in the PWNe must decrease with time.
The discovery of extended TeV emission around the Geminga and PSR B0656+14 pulsars, with properties consistent with free particle propagation in the interstellar medium (ISM), has sparked considerable discussion on the possible presence of such halos in other systems. Here we make an assessment of the current TeV source population associated with energetic pulsars, in terms of size and estimated energy density. Based on two alternative estimators we conclude that a large majority of the known TeV sources have emission originating in the zone energetically and dynamically dominated by the pulsar (i.e. the pulsar wind nebula), rather than from a halo of particles diffusing in to the ISM. Furthermore, whilst the number of established halos will surely increase in the future, we find that it is unlikely that such halos contribute significantly to the total TeV $gamma$-ray luminosity from electrons accelerated in PWN.
The most numerous source class that emerged from the H.E.S.S. Galactic Plane Survey are Pulsar Wind Nebulae (PWNe). The 2013 reanalysis of this survey, undertaken after almost 10 years of observations, provides us with the most sensitive and most com plete census of gamma-ray PWNe to date. In addition to a uniform analysis of spectral and morphological parameters, for the first time also flux upper limits for energetic young pulsars were extracted from the data. We present a discussion of the correlation between energetic pulsars and TeV objects, and their respective properties. We will put the results in context with the current theoretical understanding of PWNe and evaluate the plausibility of previously non-established PWN candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا