ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Evolution of Pulsar Wind Nebulae

94   0   0.0 ( 0 )
 نشر من قبل Aya Bamba
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aya Bamba




اسأل ChatGPT حول البحث

During the search for counterparts of very-high-energy gamma-ray sources, we serendipitously discovered large, extended, low surface brightness emission from PWNe around pulsars with the ages up to ~100 kyrs, a discovery made possible by the low and stable background of the Suzaku X-ray satellite. A systematic study of a sample of 8 of these PWNe, together with Chandra datasets, has revealed us that the nebulae keep expanding up to for ~100 kyrs, although time scale of the synchrotron X-ray emission is only ~60 yr for typical magnetic fields of 100 microG. Our result suggests that the accelerated electrons up to ~80 TeV can escape from the PWNe without losing most energies. Moreover, in order to explain the observed correlation between the X-ray size and the pulsar spindwon age, the magnetic field strength in the PWNe must decrease with time.

قيم البحث

اقرأ أيضاً

155 - O.C. de Jager 2009
In this paper we explore the evolution of a PWN while the pulsar is spinning down. An MHD approach is used to simulate the evolution of a composite remnant. Particular attention is given to the adiabatic loss rate and evolution of the nebular field s trength with time. By normalising a two component particle injection spectrum (which can reproduce the radio and X-ray components) at the pulsar wind termination shock to the time dependent spindown power, and keeping track with losses since pulsar/PWN/SNR birth, we show that the average field strength decreases with time as $t^{-1.3}$, so that the synchrotron flux decreases, whereas the IC gamma-ray flux increases, until most of the spindown power has been dumped into the PWN. Eventually adiabatic and IC losses will also terminate the TeV visibility and then eventually the GeV visibility.
We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible magnetar-wind nebulae have been recently identified.
84 - D. Volpi 2009
The main goal of our present work is to provide, for the first time, a simple computational tool that can be used to compute the brightness, the spectral index, the polarization, the time variability and the spectrum of the non-thermal light (both sy nchrotron and inverse Compton, IC) associated with the plasma dynamics resulting from given relativistic magnetohydrodynamics (RMHD) simulations. The proposed method is quite general, and can be applied to any scheme for RMHD and to all non-thermal emitting sources, e.g. pulsar wind nebulae (PWNe), and in particular to the Crab Nebula (CN) as in the present proceeding. Here only the linear optical and X-ray polarization that characterizes the PWNe synchrotron emission is analyzed in order to infer information on the inner bulk flow structure, to provide a direct investigation of the magnetic field configuration, in particular the presence and the strength of a poloidal component, and to understand the origin of some emitting features, such as the knot, whose origins are still uncertain. The inverse Compton radiation is examined to disentangle the different contributions to radiation from the magnetic field and the particle energy distribution function, and to search for a possible hadronic component in the emitting PWN, and thus for the presence of ions in the wind. If hadronic radiation was found in a PWN, young supernova remnants would provide a natural birth-place of the cosmic-rays (CRs) up to the so-called knee in the CR spectrum.
110 - N. Bucciantini 2010
Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when the pulsar wind is confined by the SNR or the ISM. Recent observations have shown a richness of emission features that has driven a renewed interest in the theoretical model ing of these objects. In recent years a MHD paradigm has been developed, capable of reproducing almost all of the observed properties of PWNe, shedding new light on many old issues. Given that PWNe are perhaps the nearest systems where processes related to relativistic dynamics can be investigated with high accuracy, a reliable model of their behavior is paramount for a correct understanding of high energy astrophysics in general. I will review the present status of MHD models: what are the key ingredients, their successes, and open questions that still need further investigation.
To look for possible phenomenological connections between pulsars timing properties and emissions from pulsar wind nebulae and their pulsars, we studied the power-law component of the X-ray emissions from 35 pulsar wind nebulae which have a detected pulsar in X-rays. Our major results are in the following: (1) The power-law component of the X-ray luminosities, in the energy range from 0.5 keV to 8 keV, of the nebulae and of the pulsar both show a strong correlation with the pulsar spin-down power ($dot{E}$), consistent with earlier studies. However, equally significant correlations with the magnetic field strength at the light cylinder ($B_{rm lc}$) are also found. The similar significance level of the correlations with $dot{E}$ and with $B_{rm lc}$ suggests that not only $dot{E}$ but also $B_{rm lc}$ plays an important role in understanding these power-law emissions. (2) Thermal X-ray emissions are detected in 12 pulsars among the 35 samples. With derived temperature as one additional variable, we found that the photon indices of pulsars non-thermal X-ray power-law spectra can be well described by a linear function of $log P$, $logdot{P}$ and temperature logarithm $log T$. It indicates that the surface temperature of neutron stars plays an important role in determining the energy distribution of the radiating pair plasma in pulsars magnetospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا