ﻻ يوجد ملخص باللغة العربية
Two topics of high current interest in the field of unconventional superconductivity are non-centrosymmetric superconductors and multiband superconductivity. Half-Heusler superconductors such as YPtBi exemplify both. In this paper, we study bulk and surface states in nodal superconducting phases of the half-Heusler compounds, belonging to the $A_1$ ($s+p$-like) and $T_2$ ($k_zk_x+ik_zk_y$-like) irreducible representations of the point group. These two phases preserve and break time-reversal symmetry, respectively. For the $A_1$ case, we find that flat surface bands persist in the multiband system. In addition, the system has dispersive surface bands with zero-energy crossings forming Fermi arcs, which are protected by mirror symmetries. For the $T_2$ case, there is an interesting coexistence of point and line nodes, known from the single-band case, with Bogoliubov Fermi surfaces (two-dimensional nodes). There are no flat-band surface states, as expected, but dispersive surface bands with Fermi arcs exist. If these arcs do not lie in high-symmetry planes, they are split by the antisymmetric spin-orbit coupling so that their number is doubled compared to the inversion-symmetric case.
We report a study of the magnetic and electronic properties of the non-centrosymmetric half-Heusler antiferromagnet HoPdBi ($T_N = 2.0$ K). Magnetotransport measurements show HoPdBi has a semimetallic behaviour with a carrier concentration $n=3.7 tim
Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) predicted inhomogeneous superconducting and superfluid ground states, spontaneously breaking translation symmetries. In this Letter, we demonstrate that the transition from the FFLO to the normal state a
The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-
We report results of dc magnetic and ac linear low-frequency study of a polycrystalline MgB$_2$ sample. AC susceptibility measurements at low frequencies, performed under dc fields parallel to the sample surface, provide a clear evidence for surface superconducting states in MgB$_2$.
A systematic study of irreversible magnetization was performed in bulk Niobium after different surface treatments. Starting with smooth surfaces and abrading them, a strong increase of the critical current is observed up an apparent limiting value. A