ﻻ يوجد ملخص باللغة العربية
Randomized load balancing networks arise in a variety of applications, and allow for efficient sharing of resources, while being relatively easy to implement. We consider a network of parallel queues in which incoming jobs with independent and identically distributed service times are assigned to the shortest queue among a randomly chosen subset of $d$ queues, and leave the network on completion of service. Prior work on dynamical properties of this model has focused on the case of exponential service distributions. In this work, we analyze the more realistic case of general service distributions. We first introduce a novel particle representation of the state of the network, and characterize the state dynamics via a sequence of interacting measure-valued stochastic processes. Under mild assumptions, we show that the sequence of scaled state processes converges, as the number of servers goes to infinity, to a hydrodynamic limit that is characterized as the unique solution to a countable system of coupled deterministic measure-valued equations. We also establish a propagation of chaos result that shows that finite collections of queues are asymptotically independent. The general framework developed here is potentially useful for analyzing a larger class of models arising in diverse fields including biology and materials science.
Randomized load-balancing algorithms play an important role in improving performance in large-scale networks at relatively low computational cost. A common model of such a system is a network of $N$ parallel queues in which incoming jobs with indepen
To reduce carbon emission in the transportation sector, there is currently a steady move taking place to an electrified transportation system. This brings about various issues for which a promising solution involves the construction and operation of
This paper considers the steady-state performance of load balancing algorithms in a many-server system with distributed queues. The system has $N$ servers, and each server maintains a local queue with buffer size $b-1,$ i.e. a server can hold at most
In this note, we apply Steins method to analyze the performance of general load balancing schemes in the many-server heavy-traffic regime. In particular, consider a load balancing system of $N$ servers and the distance of arrival rate to the capacity
We introduce a general framework for the mean-field analysis of large-scale load-balancing networks with general service distributions. Specifically, we consider a parallel server network that consists of N queues and operates under the $SQ(d)$ load