ﻻ يوجد ملخص باللغة العربية
We introduce a general framework for the mean-field analysis of large-scale load-balancing networks with general service distributions. Specifically, we consider a parallel server network that consists of N queues and operates under the $SQ(d)$ load balancing policy, wherein jobs have independent and identical service requirements and each incoming job is routed on arrival to the shortest of $d$ queues that are sampled uniformly at random from $N$ queues. We introduce a novel state representation and, for a large class of arrival processes, including renewal and time-inhomogeneous Poisson arrivals, and mild assumptions on the service distribution, show that the mean-field limit, as $N rightarrow infty$, of the state can be characterized as the unique solution of a sequence of coupled partial integro-differential equations, which we refer to as the hydrodynamic PDE. We use a numerical scheme to solve the PDE to obtain approximations to the dynamics of large networks and demonstrate the efficacy of these approximations using Monte Carlo simulations. We also illustrate how the PDE can be used to gain insight into network performance.
This paper studies load balancing for many-server ($N$ servers) systems. Each server has a buffer of size $b-1,$ and can have at most one job in service and $b-1$ jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We foc
Randomized load-balancing algorithms play an important role in improving performance in large-scale networks at relatively low computational cost. A common model of such a system is a network of $N$ parallel queues in which incoming jobs with indepen
This paper considers the steady-state performance of load balancing algorithms in a many-server system with distributed queues. The system has $N$ servers, and each server maintains a local queue with buffer size $b-1,$ i.e. a server can hold at most
Randomized load balancing networks arise in a variety of applications, and allow for efficient sharing of resources, while being relatively easy to implement. We consider a network of parallel queues in which incoming jobs with independent and identi
Set function optimization is essential in AI and machine learning. We focus on a subadditive set function that generalizes submodularity, and examine the subadditivity of non-submodular functions. We also deal with a minimax subadditive load balancin