ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of dynamical dark energy from polynomial $f(R)$ theory in Palatini formalism

65   0   0.0 ( 0 )
 نشر من قبل Marek Szydlowski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider FRW cosmology in $f(R)= R+ gamma R^2+delta R^3$ modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.



قيم البحث

اقرأ أيضاً

We investigate cosmological dynamics based on $f(R)$ gravity in the Palatini formulation. In this study we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piece-wise smooth dynamical s ystem. This system is is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee $C^0$ extendibility of the metric similarly as `Milne-like FLRW spacetimes are $C^0$-extendible. We point out that importance of dynamical system of Newtonian type with non-smooth right-hand sides in the context of Palatini cosmology. In this framework we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.
Recently D. Vollick [Phys. Rev. D68, 063510 (2003)] has shown that the inclusion of the 1/R curvature terms in the gravitational action and the use of the Palatini formalism offer an alternative explanation for cosmological acceleration. In this work we show not only that this model of Vollick does not have a good Newtonian limit, but also that any f(R) theory with a pole of order n in R=0 and its second derivative respect to R evaluated at Ro is not zero, where Ro is the scalar curvature of background, does not have a good Newtonian limit.
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models emp loy Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.
We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of geometry of a potential function if it has poles. At the sewn singularity, which i s of a finite scale factor type, the singularity in the past meets the singularity in the future. We show, that such singularities appear in the Starobinsky model in $f(hat{R})=hat{R}+gamma hat{R}^2$ in the Palatini formalism, when dynamics is determined by the corresponding piece-wise smooth dynamical system. As an effect we obtain a degenerated singularity. Analytical calculations are given for the cosmological model with matter and the cosmological constant. The dynamics of model is also studied using dynamical system methods. From the phase portraits we find generic evolutionary scenarios of the evolution of the Universe. For this model, the best fit value of $Omega_gamma=3gamma H_0^2$ is equal $9.70times 10^{-11}$. We consider model in both Jordan and Einstein frames. We show that after transition to the Einstein frame we obtain both form of the potential of the scalar field and the decaying Lambda term.
Slow-roll inflation is analyzed in the context of modified gravity within the Palatini formalism. As shown in the literature, inflation in this framework requires the presence of non-traceless matter, otherwise it does not occur just as a consequence of the non-linear gravitational terms of the action. Nevertheless, by including a single scalar field that plays the role of the inflaton, slow-roll inflation can be performed in these theories, where the equations lead to an effective potential that modifies the dynamics. We obtain the general slow-roll parameters and analyze a simple model to illustrate the differences introduced by the gravitational terms under the Palatini approach, and the modifications on the spectral index and the tensor to scalar ratio predicted by the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا