ﻻ يوجد ملخص باللغة العربية
Signal transduction networks can form highly interconnected systems within cells due to network crosstalk, the sharing of input signals between multiple downstream responses. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk and the emergence of specificity for two parallel signaling pathways that arise via gene duplication and are subsequently allowed to diverge. We focus on a sequence based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. Surprisingly, we find that the two fitness functions lead to very different evolutionary outcomes, one with a high degree of crosstalk and the other without.
Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directi
Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) p
The infection pathway of virus in cytoplasm of a living cell is studied from the viewpoint of diffusion theory. The cytoplasm plays a role of a medium for stochastic motion of the virus contained in the endosome as well as the free virus. It is exper
Within cells, vesicles and proteins are actively transported several micrometers along the cytoskeletal filaments. The transport along microtubules is propelled by dynein and kinesin motors, which carry the cargo in opposite directions. Bidirectional
Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as lipid rafts remains controversial. Here we consider a lattice model yieldin