ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Electroporation and the Transduction of Oligoarginines

225   0   0.0 ( 0 )
 نشر من قبل Kevin E. Cahill
 تاريخ النشر 2009
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Kevin Cahill




اسأل ChatGPT حول البحث

Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.



قيم البحث

اقرأ أيضاً

The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.
The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalen t counterions can cause DNA reentrant condensation similar to that caused by tri- or tetra-valent counterions. DNA-DNA interaction is strongly repulsive at small or large counterion concentration and is negligible or slightly attractive for a concentration in between. Implications of our results to experiments of DNA ejection from bacteriophages are discussed. The quantitative result serves to understand electrostatic effects in other experiments involving DNA and divalent counterions.
Signal transduction networks can form highly interconnected systems within cells due to network crosstalk, the sharing of input signals between multiple downstream responses. To better understand the evolutionary design principles underlying such net works, we study the evolution of crosstalk and the emergence of specificity for two parallel signaling pathways that arise via gene duplication and are subsequently allowed to diverge. We focus on a sequence based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. Surprisingly, we find that the two fitness functions lead to very different evolutionary outcomes, one with a high degree of crosstalk and the other without.
The primary activation of the epidermal growth factor receptor (EGFR) has become a prominent target for molecular therapies against several forms of cancer. But despite considerable progress during the last years, many of its aspects remain poorly un derstood. Experiments on lateral spreading of receptor activity into ligand-free regions challenge the current standard models of EGFR activation. Here, we propose and study a theoretical model, which explains spreading into ligand-free regions without introducing any new, unknown kinetic parameters. The model exhibits bistability of activity, induced by a generic reaction mechanism, which consists of activation via dimerization and deactivation via a Michaelis-Menten reaction. It possesses slow propagating front solutions and faster initial transients. We analyze relevant experiments and find that they are in quantitative accordance with the fast initial modes of spreading, but not with the slow propagating front. We point out that lateral spreading of activity is linked to pathological levels of persistent receptor activity as observed in cancer cells and exemplify uses of this link for the design and quick evaluation of molecular therapies targeting primary activation of EGFR.
Novel diagnostic and therapeutic radiopharmaceuticals are increasingly becoming a central part of personalized medicine. Continued innovation in the development of new radiopharmaceuticals is key to sustained growth and advancement of precision medic ine. Artificial intelligence (AI) has been used in multiple fields of medicine to develop and validate better tools for patient diagnosis and therapy, including in radiopharmaceutical design. In this review, we first discuss common in silico approaches and focus on their utility and challenges in radiopharmaceutical development. Next, we discuss the practical applications of in silico modeling in design of radiopharmaceuticals in various diseases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا